Math, asked by abdul5816, 1 year ago

A circle with centre P is inscribed in the triangleABC . side AB,BC,AC towards the circle at L,M,N . prove that, A(ABC)=
 \frac{1}{2} (
AB+BC+AC)×r


tdeore79: Answer do na

Answers

Answered by Harsha7177
9

Hope it will help..................

Attachments:
Answered by saltywhitehorse
1

Answer:

Step-by-step explanation:

Consider P is the center of the circle.  

Radius of the circle =r

Prove that

\text{Area of }\Delta ABC=\frac{1}{2}(AB+BC+AC)\times r

Draw lines between PA, \text{ }PB and PC

AB is tangent on the circle, touch the circle at the point L, and PL is the radius.

According to the tangent radius theory PL\perp AB

therefore we can proved that  

PN\perp AC

PM\perp BC

We know that,

PL=PM=PN=r\text{ (Radius of the circle)}

And \Delta APL, \Delta APN, \Delta BPL, \Delta BPM, \Delta CPM \text{ and }\Delta CPN\text{ are right angled triangle}

Therefore,

\text{Area of }\Delta ABC=\text{Area of }\Delta APL+\text{Area of }\Delta APN+\text{Area of }\Delta BPL+\text{Area of }\Delta BPM+\text{Area of }\Delta CPM+\text{Area of }\Delta CPN\\\\=\frac{1}{2}\times PL\times AL+\frac{1}{2}\times PN\times AN+\frac{1}{2}\times PL\times BL+\frac{1}{2}\times PM\times BM+\frac{1}{2}\times PM\times CM+\frac{1}{2}\times PN\times CN

=\frac{1}{2}\times r\times AL+\frac{1}{2}\times r\times AN+\frac{1}{2}\times r\times BL+\frac{1}{2}\times r\times BM+\frac{1}{2}\times r\times CM+\frac{1}{2}\times r\times CN\\\\=\frac{1}{2}\times r(AL+AN+BL+BM+CM+CN)\\\\=\frac{1}{2}\times r(AL+BL+BM+CM+CN+AN)\\\\=\frac{1}{2}\times r(AB+BC+AC)

Attachments:
Similar questions