Physics, asked by Iwanttobeakinddoctor, 1 year ago

A circular coil of radius 1 m carries a current 2.5 A.
If it is placed in a magnetic field of 10 Wb/m2
The work done to rotate it from position to stable
equilibrium to unstable equilibrium is
0507 J
(2) 2.5 J
(3) 25 J
(4) 2.5 J

Answers

Answered by atulrajcool
12

Change in P.E= WORK DONE=MB-(-MB)=2MB=2IAB

Put all the values you will get the answer.

HOPE IT HELPS

PLEASE MARK BARAINLIST

Answered by abhijattiwari1215
0

Answer:

A circular coil of radius 1 m carrying current 2.5A, placed in magnetic field 10Wb/m². Work done in rotating coil from stable to unstable equilibrium is 157.07 J.

Explanation:

  • A circular current carrying loop behaves as a magnetic dipole.
  • The magnetic dipole moment, m of any current carrying loop is equal to the product of current and its loop area.

magnetic \: dipole \: moment, m = IA

  • Its direction is defined to be normal to the plane of the loop in the sense given by right hand thumb rule.
  • When a magnetic dipole is placed in a magnetic field, B it experience a torque.
  • If the dipole is rotated against the action of this torque, work has to be done. This work is stored as potential energy of the dipole.

potential \: energy \:, U = - mB cosθ

  • If θ = 0⁰, the magnetic dipole is in stable equilibrium.
  • If θ = 180⁰, the magnetic dipole moment is in unstable equilibrium.

Given that:

  • Radius of coil = 1 meter
  • Current in coil = 2.5 A
  • Magnetic field strength = 10 Wb/m²

Solution:

  • Potential energy in stable equilibrium is -mB.
  • Potential energy in unstable equilibrium is mB.
  • Total change in potential energy = mB - (-mB) = 2mB.
  • This potential energy is equal to work done.

Work \:  done, W = 2mB \\  = 2IAB \\  = 2 \times 2.5 \times π \times (1)² \times 10 \\  = 50π \\ = 157.07J

  • Hence, the total work done is 157.07 J.
Similar questions