Physics, asked by fathimajaleel0407, 6 months ago

a circular disc of mass 0.5kg and radius 0.1m is making 60 revolutions per n=minute about an axis passing through the centre and perpendicular to its plane . calculate it's kinetic energy​

Answers

Answered by sujal1247
1

 \huge\mathcal\colorbox{lavender}{{\color{b}{✿answer✿:}}}

 {{given:}}  \\ \red{mass \: of \: disc \: (m)  = 0.5kg} \\  \red{radius \: of \: disc \: (r) = 0.1m} \\ \red {angular \: velocity \: of \: disc(w) =60rpm =  \frac{60 \times 2\pi }{60} = 2\pi \: rad/sec}  \\  \blue{moment \: of \: intertia \: of \: disc \: about \: a \: point \: passing \: through}  \\    \blue{circumference \: and \: perpendicular \: to \: the \: plane}\\   \green{{I}^{'}  = Ig  + m{r}^{2}} \\  \pink{but \:  \:  Ig =  \frac{ m{r}^{2} }{2} (for \: above \: case)} \\  \green{∴{I}^{'} =  \frac{m{r}^{2} }{2}  +  m{r}^{2}  =  \frac{3}{2} m {r}^{2}}  \\  \orange{Rotational  \: kinetic  \: energy  \: = \frac{1}{2} I{ω}^{2}} \\    \orange{ = \frac{1}{2} \times  \frac{3}{2}  M{R}^{2} ×{(2π)}^{2}}\\ \blue{∴Rotational  \: kinetic  \: energy = \frac{3}{4}  \times 0.5 \times {(0.1)}^{2}  \times {(2 \times 3.142)}^{2}}\\  =  \green{0.00375 \times 2 \times 3.142 \times 2 \times 3.142 }\\  =  \green{0.14808246}

Similar questions