Math, asked by hellogamer13579, 3 months ago

A circular field has an area 1256{cm}^21256cm 2 . A horse is tied at the centre of the field with the help of a rope 15m15m long. How much area of the field will the horse be able to graze? Also find the area of the remaining field.

Answers

Answered by Anonymous
2

Step-by-step explanation:

Using Pythagoras theorem:

Using Pythagoras theorem:PS

Using Pythagoras theorem:PS 2

Using Pythagoras theorem:PS 2 =PO

Using Pythagoras theorem:PS 2 =PO 2

Using Pythagoras theorem:PS 2 =PO 2 +SO

Using Pythagoras theorem:PS 2 =PO 2 +SO 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r)

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r)

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R=

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R= 2

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R= 23r

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R= 23r

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R= 23r

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R= 23r Total grazed area =

Using Pythagoras theorem:PS 2 =PO 2 +SO 2 ⇒(R+r) 2 =R 2 +(2R−r) 2 ⇒R 2 +r 2 +2Rr=R 2 +4R+r 2 −4Rr⇒4R 2 −6Rr=0⇒2R(2R−3r)=0⇒R= 23r Total grazed area = 2

π

+

+ 2

π

+π(

+π( 3

+π( 32R

+π( 32R

+π( 32R )

+π( 32R ) 2

+π( 32R ) 2

+π( 32R ) 2 =

+

+ 9

+ 94

+ 94

+ 94

+ 94

+ 94 Ungad area = π

+ 94 Ungad area = π 2

+ 94 Ungad area = π 2(2R)

+ 94 Ungad area = π 2(2R) 2

+ 94 Ungad area = π 2(2R) 2

+ 94 Ungad area = π 2(2R) 2

+ 94 Ungad area = π 2(2R) 2 −π

+ 94 Ungad area = π 2(2R) 2 −π2

+ 94 Ungad area = π 2(2R) 2 −π2 −

+ 94 Ungad area = π 2(2R) 2 −π2 − 9

+ 94 Ungad area = π 2(2R) 2 −π2 − 94

+ 94 Ungad area = π 2(2R) 2 −π2 − 94

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 =

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 9

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area =

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9 ×100

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9 ×100=

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9 ×100= 18

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9 ×100= 18500

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9 ×100= 18500

+ 94 Ungad area = π 2(2R) 2 −π2 − 94 π2 = 95πR 2 Percentage of gazed area = 2πR 2 9 ×100= 18500 =28%

Answered by hmnagaraja3
0

Answer:

hope it helps you

Mark as BRAINLIEST

Attachments:
Similar questions