Physics, asked by slugslinger5734, 1 year ago

A circular loop of radius 20 cm carries a current of 10 A. An electron crosses the plane of the loop with a speed of 2.0 × 106 m s−1. The direction of motion makes an angle of 30° with the axis of the circle and passes through its centre. Find the magnitude of the magnetic force on the electron at the instant it crosses the plane.

Answers

Answered by as1965286p7d7zu
0

Answer:

1. The magnitude of magnetic field is directly proportional to the magnitude of current through the loop. i.e. B∝I.

2. The magnitude of magnetic field is inversely proportional to the radius of the circular loop. i.e. B∝1r.

Explanation:

hence,  given      

                    r=20cm,  I=10A ,    V=2.0 x 10^6 m s-1

             therefore,

         B=(permeability of free space) x I  /  2пr

           B= (4п x 10^-7  T * M/A ) X 10 A /  2*п*20cm

          B=10^-7 T (tesla)

           F=qvB sinθ,

           F=1.6*10^-19 * 2.0 x10^6 x 10^-7 x  (sin30)degree

             F=1.6 * 10^-20  N

   

          I hope it helps..

Answered by bhuvna789456
0

The magnitude of the magnetic force on the electron at the instant it crosses the plane is 16 \pi \times 10^{-19} N

Explanation:

Given data in the question  

In the loop, current magnitude, I = 10 A

Loop Radius r = 20 cm = 20 \times 10^{-2}  m

The magnetic field strength at the core is therefore determined

B=\frac{\mu_{0} i}{2 r}

Electron velocity  v = 2 × 10^{6} m/s

Angle between velocity and intensity of magnetic field, θ = 30°

The magnetic force on the electron is thus given by the

F=e v B \sin \theta

   =1.6 \times 10^{-19} \times 2 \times 10^{6} \times \frac{\mu_{0} i}{2 R} \sin 30^{\circ}

   =1.6 \times 10^{-19} \times 2 \times 10^{6} \times \frac{\left(4 \pi \times 10^{-7} \times 10\right)}{2 \times 20 \times 10^{-2}} \times \frac{1}{2}

   =3.2 \times 10^{-19} \times 10^{6} \times \frac{\left(4 \pi \times 10^{-7} \times 10\right)}{2 \times 20 \times 10^{-2}} \times 0.5

   =3.2 \times 10^{-13} \times \frac{\left(40 \pi \times 10^{-7}\right)}{40 \times 10^{-2}} \times 0.5

   =3.2 \times 10^{-13} \times \frac{\left(\pi \times 10^{-7}\right)}{10^{-2}} \times 0.5

   =3.2 \times 10^{-13} \times \frac{\left(\pi \times 10^{-7}\right)}{10^{-2}} \times 0.5

   =1.6 \times 10^{-13} \times \frac{\left(\pi \times 10^{-7}\right)}{10^{-2}}

   =16 \pi \times 10^{-19} N

The magnitude of the magnetic force on the electron is 16 \pi \times 10^{-19} N

Similar questions