Math, asked by jackzzjck, 10 months ago

a circular metallic sheet is divided into two parts in such a way that each part can be folded into a cone IF RATIO OF THEIR CSA IS 1:2 FIND RATIO OF THEIR VOLUME PLEASE ONLY CORRECT ANSWERS

Answers

Answered by knjroopa
12

Step-by-step explanation:

Given a circular metallic sheet is divided into two parts in such a way that each part can be folded into a cone IF RATIO OF THEIR CSA IS 1:2 FIND RATIO OF THEIR VOLUME  

  • So a circle is divided into two parts like theta and 360 – theta.
  • Now let a circle PQRS be divided into 2 parts like PSQ and PRQ
  • Area of sector PSQ / Area of sector PRQ  
  • theta / 360 x πr^2 / 360 – theta / 360 x π r^2 = ½
  •        theta / 360 – theta = 1/2  
  •      2 theta = 360 – theta
  •  Or theta = 120 degree
  • Now PSQ = theta / 360 x circumference
  •                 = 120 / 360 x 2 π r
  •            = 2/3 π r
  • Also PRQ =4/3 π r
  • Now each part is folded into a cone
  • SO PSQ = circumference of base = 2πr1
  •                    2πr/3 = 2πr1
  •               So r1 = r/3
  • Similarly we have
  •                  4πr/3 = 2πr2
  •            So r2 = 2r/3
  • Now we need to find the height
  •          So h1 = √r^2 – r1^2
  •                    = √r^2 – r^2/9
  •                  = 2√2 r / 3
  •       So h2 = √r^2 – r2^2
  •               = √r^2 – 4r^2 / 9
  •            = √5 / 3 r
  •     Volume will be 1/3 πr^2 h
  • Now volume v1 / v2 = 1/3 π r1^2 h1 / 1/3 π r2^2 h2
  •                                       = (r1/r2)^2 (h1/h2)
  •                                      = (r/3 / 2r/3)^2 (2√2 / 3 /√5 / 3r)
  •                                      = 1/4 x 2√2 / √5
  •                                    = 1/√10
  •     So we get v1: v2 = 1 :√10

Reference link will be

https://brainly.in/question/19419943

Answered by challengerop
0

Answer:

ya the above answer is correct

Similar questions