Math, asked by balendra102030, 4 months ago

A circular park, 42 m in diameter, has a path 3.5 m wide running
round it on the outside. Find the cost of gravelling the path at
20 per m
m?​

Answers

Answered by dikshasinghgurjar15
2

Answer:

area of path = area of bigger circle - area of smaller circle

radius of bigger circle = 42 + 3.5 = 45.5m

area of bigger circle = πr²

area of bigger circle = 22/7 × 45.5 × 45.5

area of bigger circle = 6506.5 m²

area of smaller circle = πr²

area of smaller circle = 22/7 × 42 × 42

area of smaller circle = 5544 m²

area of path = 6505.5 - 5544

area of path = 962.5 m²

the cost of gravelling the path = area of path × cost of gravelling at per m²

the cost of gravelling the path = 962.5 × 20

the cost of gravelling the path = 19250 rupees

Answered by SANDHIVA1974
2

Given :

The diameter of a circular park is 42 m.

A 3.5 m wide path lies along the periphery just outside the park.

\begin{gathered}\end{gathered}

To Find :

The cost of constructing a pavement on the path at the rate of $20per m².

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\sf{Radius = \dfrac{Diameter}{2}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Area  \: of  \: Inner \:  circle  =  \pi{r}^{2}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Area  \: of  \: outer\:  circle  =  \pi{R}^{2}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Area_{(parth)} = Area_{(outer\: circle)}  - Area_{(inner \: circle)}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Cost = Area \:  of  \: path   \times  constructing \:  rate  \: per \:   {m}^{2}}}}}}}

\begin{gathered}\end{gathered}

Solution :

⚘ Finding the area of park without path :-

\longrightarrow{\sf{Radius = \dfrac{Diameter}{2}}}

\longrightarrow{\sf{Radius = \dfrac{42}{2}}}

\longrightarrow{\sf{Radius =  \cancel\dfrac{42}{2}}}

\longrightarrow{ \underline{\boxed{\sf{\red{Radius = 21 \: m}}}}}

∴ The radius of park without path is 21 m.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding the area of park with path :-

\longrightarrow{\sf{Radius = 21 + 3.5}}

\longrightarrow{\sf{Radius = 24.5 \: m}}

\longrightarrow{ \underline{\boxed{\sf{\red{Radius = 24.5\: m}}}}}

∴ The area of park with path is 24.5 m.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding area of Inner circle :-

\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \pi{r}^{2}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22}{7} \times  {(21)}^{2}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22}{7} \times  {(21 \times 21)}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22}{7} \times  {441}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22 \times 441}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{9702}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \cancel{\dfrac{9702}{7}}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  1386 \:  {m}^{2}}}}

{\longrightarrow{ \underline{\boxed{\sf{\red{Area  \: of  \: Inner \:  circle  =  1386 \:  {m}^{2}}}}}}}

∴ The area of inner circle is 1386 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding the area of outer circle :-

\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \pi{R}^{2}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22}{7} \times {(24.5)}^{2}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22}{7} \times {(24.5 \times 24.5)}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22}{7} \times {600.25}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22 \times 600.25}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{13205.5}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =   \cancel{\dfrac{13205.5}{7}}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  = 1886.5 \:  {m}^{2}}}}

{\longrightarrow{ \underline{\boxed{\sf{\red{Area  \: of  \: outer\:  circle  = 1886.5\:  {m}^{2}}}}}}}

∴ The area of outer circle is 1886.5 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding the area of path :-

{\longrightarrow{\small{\underline{\boxed{\sf{Area_{(parth)} = Area_{(outer\: circle)}  - Area_{(inner \: circle)}}}}}}}

{\longrightarrow{\sf{Area_{(parth)} = 1886.5 -  1386}}}

{\longrightarrow{\sf{Area_{(parth)} =500.5 \:  {m}^{2}}}}

{\longrightarrow{\underline{\boxed{\sf{\red{Area \: of \: parth =500.5 \:  {m}^{2}}}}}}}

∴ The area of path is 505.5 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Now finding the cost of constructing a pavement on the path :-

{\longrightarrow{\sf{Cost = Area \:  of  \: path   \times  constructing \:  rate  \: per \:   {m}^{2}}}}

{\longrightarrow{\sf{Cost = 500.5  \times 20}}}

{\longrightarrow{\sf{Cost = \$10010}}}

{\longrightarrow{\underline{\boxed{\sf{\red{Cost = \$10010}}}}}}

∴ The cost of constructing a pavement on the path is $10010.

\underline{\rule{220pt}{2.5pt}}

Similar questions