Math, asked by niharika016, 1 year ago

A circular park is surrounded by a road 21 m wide. if the radius of the park is 105 m, find the area of the road​

Answers

Answered by Brainly9b78
14
\sf{\large{\underline{\underline{Question:}}}}



A circular park is surrounded by a road 21 m wide. If the radius of the park is 105 m, then find the area of the road.



____________________________________



\sf{\large{\underline{\underline{Answer}}}}



15246 cm²



____________________________________



\huge \pink{ \mid \underline{ \overline{ \sf Brainly \: Solution :}} \mid}



▶ Given,


Radius of Circular Park=105 m

Width of Road Around the Park=21 m

 \sf \therefore Radius \: of \: big \: circle = 105 + 21 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \sf 126 \: m
 \sf Area \: of \: road = Area \: of \: bigger \: circle - Area \: of \:circular \: park \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = \pi {R}^{2} - \pi {r}^{2} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = \pi \bigg(R {}^{2} - {r}^{2} \bigg) \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = \pi \bigg[ {(126)}^{2} - {(105)}^{2} \bigg] \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = \frac{22}{7} \times (126 + 105)(126 - 105) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bigg[ \because a {}^{2} - b {}^{2} = (a + b)(a - b) \bigg] \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = \frac{22}{ \cancel7} \times 231 \times \cancel{21} \: ^ { \large3} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = 66 \times 231 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = 15246 \: cm {}^{2}

 \huge \orange{ \boxed{ \boxed{ \sf{ \therefore Area \: of \: Road = 15246 \: {cm}^{2} }}}}


✔✔ Hence, it is solved ✅✅.


\huge \green{ \boxed{ \boxed{ \mathscr{THANKS}}}}

____________________________________
Attachments:
Similar questions