Math, asked by manish233, 1 year ago

a circular piece of thin wire is converted into a rhombus of side 11 cm find the diameter of a circular piece

Answers

Answered by HermioneGranger2007
6
I think it's the answer.
Attachments:
Answered by AngeliCat
8

\star\small\sf\underline\blue{Given:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • A circular piece of thin wire is converted into a rhombus of side 11 cm.

______________________

\star\small\sf\underline\blue{To\: Find:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • The diameter of the circular piece = ?

______________________

\star\small\sf\underline\blue{Solution:-}

 \sf \: Let \: the \: radius \: of \: the \: circle \: be \: r \: cm.\\\\

\footnotesize\bold{\underline{\underline{\sf{\red{Therefore:-}}}}}\\\\

 \:  \sf \: Diameter = 2 \times radius \\\\  \sf \: Diameter = 2r \: cm \\  \\  \sf \: Circumference = 2\pi \: r

\footnotesize\bold{\underline{\underline{\sf{\red{Now:-}}}}}

   \sf \: Each \: length \: of \: the \: side \: of \: the \: rhombus = 11 \: cm

______________________

\star\small\sf\underline\blue{Therefore:-}

\sf \: Perimeter = 4 \times side \\  \\  \sf \: Perimeter = 4 \times 11 \: cm \\  \\  \sf \: Perimeter = 44 \: cm

\footnotesize\bold{\underline{\underline{\sf{\red{According\:to\: the\: problem:-}}}}}\\\\

Circumference of the circle = Perimeter of the rombus

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \leadsto \sf 2\pi \: r = 44 \\  \\ \leadsto \sf 2 \times  \dfrac{22}{7}  \times r = 44 \\  \\  \leadsto \sf \dfrac{44}{7}  \times r = 44 \\  \\  \leadsto \sf \: r =  \cancel{44} \times  \dfrac{7}{ \cancel{44}}  \\  \\  \leadsto \sf \: r = 7

______________________

\star\small\sf\underline\blue{Therefore:-}

\sf \: Diameter = 2r \\  \\  \sf \: Diameter = 2 \times 7 \\  \\  \sf \: Diameter = 14 \: cm

______________________

\star\small\sf\underline\blue{AnswEr:-}

  • The diameter of the circular piece is 14 cm.
Similar questions