Math, asked by parthrisa5471, 1 year ago

a class consists of 10 boys and 8 girls.3 students are selected at random.what is the probabiolity that the selected group has
1. all boys
2. all girls
3. 1 boy and 2 girls
4. at least1 girl
5. at most 1 girl?

Answers

Answered by deb15
29
plz ask if u not understand
Attachments:
Answered by hukam0685
17

Step-by-step explanation:

A class consists of 10 boys and 8 girls.3 students are selected at random.what is the Probability that the selected group has

1. all boys:

Total Students=18

To choose all 3 boys

P(3B) =  \frac{^{10}C_3}{^{18}C_3}   \\  \\  =  \frac{10!}{7! \: 3!}  \times  \frac{15! \: 3!}{18!}  \\  \\  =  \frac{10 \times9  \times 8}{18 \times 17 \times 16}  \\  \\  P(3B)=\frac{5}{34}  \\  \\

2) All girls

P(3G) =  \frac{^8C_3}{^{18}C_3}   \\  \\  =  \frac{8!}{5! \: 3!}  \times  \frac{15! \: 3!}{18!}  \\  \\  =  \frac{8\times7  \times 6}{18 \times 17 \times 16}  \\  \\ P(3G) =  \frac{7}{102}  \\  \\

3. 1 boy and 2 girls

P(1B2G) =  \frac{^{10}C_1 \: ^8C_2}{^{18}C_3}  \\  \\  =  \frac{5 \times 7 }{ 17 \times 6}  \\  \\  P(1B2G)=  \frac{35}{102}  \\  \\

4. at least1 girl

P(At1G) =P(3G) + P(2G1B) + p(1G2B)  \\ \\  =   \frac{^8C_3}{^{18}C_3}  +  \frac{^8C_2 \times ^{10}C_1}{^{18}C_3}  +  \frac{^8C_1\: ^{10}C_2}{^{18}C_3}  \\  \\  =  \frac{7}{102}  +  \frac{35}{102}  +\frac{15}{34} \\\\=\frac{87}{102}

5. at most 1 girl?

P(Am1G) = P(3B) + P(1G2B)  \\ \\  =    \frac{^{10}C_3}{^{18}C_3}  +   \frac{^8C_1\:^{10}C_2}{^{18}C_3} \\  \\  =  \frac{5}{34}+  \frac{15}{34}  \\\\P(Am1G)=\frac{10}{17}

Hope it helps you.

Similar questions