Math, asked by reshab1234com, 3 months ago


A closed box is cuboidal in shape with dimensions 50 cm by 30 cm by 45 cm. It is made of thin metal sheet.
Find the cost of metal sheet required to make 25 such boxes, if I m' of metal sheet costs 75.​

Answers

Answered by psupriya789
2

Answer:

hope it helps u

Step-by-step explanation:

L=40cm

B=30cm

H=50cm

as it is a closed box therefore we have to find total surface area

T.S.A=2(LB+BH+LH)

=2(40×30+30×50+40×50)

=2(120+150+200)

=2×470

=940cm sq

metal required for 20 boxes =20×940

=18,800

cost=18800×45

= rupees846000

Pls mark it as a brainliest answer

Answered by CɛƖɛxtríα
49

‎ ‎ ‎ ‎ ‎The cost of metal sheet required to make 25 boxes is 76.5/-

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • Dimensions of a box: Length = 50 cm, Breadth = 30 cm and Height = 45 cm.
  • Cost of 1 metre of metal sheet = 75/-

{\underline{\underline{\bf{To\:find:}}}}

  • The cost of metal sheet required to make 25 boxes of given dimensions.

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{TSA}_{(Cuboid)}=2[lb+bh+hl]\:sq.units}}}

{\underline{\underline{\bf{Solution:}}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎First, we've to find the total area of the surfaces of a box. The box is in the shape of cuboid. So, we can find its total area by inserting the given measures of length, breadth and height in the formula:

\leadsto{\sf{\purple{2[lb+bh+hl]\:sq.units}}}

\:

Applying the measures-

\\

\:\:\:\sf{2\times[(50\times 30)+(30\times 45)+(45\times 50)]}

\\

Solving the expression-

\\

\:\:\::\implies{\sf{2\times [1500+1350+2250]}}

\\

\:\:\:\:\:\::\implies{\sf{2\times [2850+2250]}}

\\

\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{2\times 5100}}

\\

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies\underline{\bf{10,200\:cm^2}}

\\ \\

Total surface area of 25 such boxes:

\leadsto{\sf{\purple{25\times TSA\:of\:a\:box}}}

\:

\:\:\:\:\:\:\:\mapsto{\sf{25\times 10200}}

\\

\:\:\:\:\:\:\:\mapsto{\sf{2,55,000\:cm^2}}

\\

Converting cm² to m²-

\:

We know, \footnotesize{\boxed{\sf{1\:cm^2=\dfrac{1}{10,000} \:  {m}^{2} }}}

\\

So,

\:

\:\:\rightarrowtail{\sf{10200\:cm^2=\dfrac{1}{100\cancel{00}}\times 102\cancel{00}}}

\\

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf{=\dfrac{\cancel{102}}{\cancel{100}}}

\\

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bf{=\underline{1.02\:m^2}}

\\ \\

Cost of metal sheet required to make 25 boxes:

\leadsto{\sf{\purple{Area\:of\:25\:boxes\times Cost\:per\:m²}}}

\:

\:\:\:\:\:\:\:\:\::\implies{\sf{1.02\times 75}}

\\

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\boxed{\frak{\red{\:\:76.5/-\:\:}}}}

_________________________________________

Similar questions