Math, asked by Anonymous, 3 months ago

A coin is tossed 150 times and data about the outcomes is as below:

\ tiny\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cc} \: \sf Outcomes &  \sf Frequency \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf H&\sf 90  \\\\\sf T &\sf 60 &\sf  \\\\\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

The probability of getting a head in a trial is :
\sf{(a)\: \dfrac{1}{2} }
\sf{b)\: \dfrac{1}{3} }
\sf{c)\: \dfrac{3}{5} }
\sf{d)\: none \:of \:these }

Answers

Answered by albadijaat748
1

the correct answer is option c (3/5)

Similar questions