Math, asked by Anonymous, 4 months ago

A coin is tossed 150 times and data about the outcomes is as below:

 \tiny\boxed{\begin{array}{cc} \: \sf Outcomes & \sf Frequency \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&  \\\sf H&\sf 90 \\\ \\  \sf T &\sf 60 &\sf \end{array}}

The probability of getting a head in a trial is :

\sf{(a)\: \dfrac{1}{2} }



\sf{b)\: \dfrac{1}{3} }


\sf{c)\: \dfrac{3}{5} }


\sf{d)\: none \:of \:these }

Answers

Answered by divyaudnur
1

Step-by-step explanation:

the ans is option B : 1/3..

Answered by StarIord
11

\large{\underbrace{\sf{\red{Required\:answer:}}}}

\sf{Total  \: number \:  of \:  possible \:  outcomes =150}

\sf{Number \:  of \:  heads \: in \: a \: trial = 90}

\sf{ P(E) = \large \frac{Number\: of\: favourable}{Total \:Number \:of \:outcomes}}

\sf{Probability \: of \: getting  \: a  \: head = \large \frac{90}{150} }=  \large \frac{3}{5}

\sf{Hence,\: the\: probability \:of \:getting \:a \:head\: in\: a} \sf{trial\: is\: \large \frac{3}{5}}

\sf{\therefore\:Option\:"c"\: is\: correct}

Similar questions