Math, asked by kaustubhindure2022, 10 months ago

a company is designing a new box to hold coffee . they have 3 designs, cuboid A ( 4cm× 6cm× 25cm) ,B( 10cm× 6cm× 10cm) , C ( 2cm× 20cm×15cm) . all 3designs have the same volume of 600cm³. the company want to choose the design with smallest surface area . which box will have the smallest surface area ? ​

Answers

Answered by zumba12
1

Given:

Three design of the coffee holder is given with dimensions.

Cuboid A(4cm×6cm×25cm)

Cuboid B(10cm×6cm×10cm)

Cuboid C(2cm×20cm×15cm)

The three cuboid has the same volume 600cm³

To find:

We need to chose the smallest surface area from the given cuboid.

Solution:

Here, we need to use the formula Total Surface area of the cuboid.

Total surface area of cuboid = 2(lb+bh+hl)

Here, l = length

b = breath

h = height

Cuboid A : 4cm × 6cm× 25cm

Length = 6cm ; Breath = 4cm ; Height = 25cm

Now, we will substitute the values in the formula.

Total surface area of cuboid = 2(lb+bh+hl)

                                               = 2 ((6×4)+(4×25)+(25×6))

                                               = 2 (24+100+150)

                                               = 2(274)

                                               = 548cm²

Cuboid B : 10cm × 6cm× 10cm

Length = 10cm ; Breath = 6cm ; Height = 10cm

Now, we will substitute the values in the formula.

Total surface area of cuboid = 2(lb+bh+hl)

                                               = 2 ((10×6)+(6×10)+(10×10))

                                               = 2 (60+60+100)

                                               = 2(220)

                                               = 440cm²

Cuboid C : 2cm × 20cm× 15cm

Length = 2cm ; Breath = 20cm ; Height = 15cm

Now, we will substitute the values in the formula.

Total surface area of cuboid = 2(lb+bh+hl)

                                               = 2 ((2×20)+(20×15)+(15×2))

                                               = 2 (40+300+30)

                                               = 2(370)

                                               = 740cm²

From the values of Cuboid A , Cuboid B and Cuboid C.

We have found out that the value of the Cuboid B is the smallest surface area.

So, the Cuboid B is the Smallest surface area 440cm².

Similar questions