Physics, asked by neharkrramchandar, 3 months ago

A concave mirror of focal length 20cm forms an image having twice the size of object. For virtual position of the object,the position of object will be at

Answers

Answered by VishalSharma01
71

Answer:

Explanation:

Given,

Focal length, f = - 20 cm

To Find,

Object Distance, u = ?

Formula or method to be used,

Magnification formula, m = - v/u

Mirror formula, 1/f = 1/v + 1/u

Solution,

Putting all the values, we get

Magnification formula, m = - v/u

⇒ m = - v/u = 2

v = - 2u .... (i)

Now, putting eq (i)'s value in the mirror formula, we get

1/f = 1/v + 1/u

⇒ 1/- 20 = 1/- 2u + 1/u

⇒ 1/- 20 = (- 1 + 2)/2u

⇒ - 1/20 = 1/2u

u = - 10 cm

Hence, the position of the object will be at - 10 cm.

Answered by BrainlyRish
38

Given : Focal Length of Concave Mirror = f = - 20 cm & forms an image having twice the size of object.

Need To Find : Position of an object.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Formula for Magnification (m) is given by :

\dag\:\:\boxed {\sf{Magnification =\bigg( \dfrac{-Size\:of\:image\:}{Size\:of\:Object} \:or\:\dfrac{-v}{u}\bigg) }}\\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf{ M = \dfrac{-v}{u}}\\\\

\qquad:\implies \sf{ 2 = \dfrac{-v}{u}}\\\\

\qquad:\implies \bf{\bigg( v = -2 u\bigg) \:\qquad \longrightarrow Eq.1}\\\\

\dag\:\frak {\underline { As,\:We\:know\:that\::}}\\\\

\dag\:\:\boxed {\sf{ \dfrac{1}{Focal\:Length} = \bigg( \dfrac{1}{Size\:of\:object \:} + \dfrac{1}{Size\:of\:image}\bigg)}}\\\\

Or ,

\dag\:\:\boxed {\sf{ \dfrac{1}{f} = \bigg( \dfrac{1}{u \:} + \dfrac{1}{v}\bigg)}}\\\\

Where,

  • F or Focal Length is -20 cm . ⠀⠀⠀⠀⠀[ Given that ]
  • v = -2u ⠀⠀⠀⠀⠀[ Eq. 1]
  • u = ?

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf { \dfrac{1}{f} =  \dfrac{1}{u \:} + \dfrac{1}{v} }\\\\

:\implies \sf { \dfrac{1}{-20} =  \dfrac{1}{u \:} + \dfrac{1}{-2u} }\\\\

:\implies \sf { \dfrac{1}{-20} =  \dfrac{-1 + 2}{2u \:}  }\\\\

:\implies \sf { \dfrac{1}{-20} =  \dfrac{1}{2u \:}  }\\\\

:\implies \sf { 2u  =  - 20  }\\\\

:\implies \sf { u = \cancel {\dfrac{-20}{2}} }\\\\

:\implies \bf { u = - 10 \: cm }\\\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \sf {  Hence\,:The\:Position \:of\:the\:object \:will\:be\:at\:\bf{-10\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions