A concave mirror produces three times enlarged virtual image of an object placed at 10 cm in front of it. Where is the image located?
Answers
คภรฬєг
m = 3 (virtual image)
m = 3 (virtual image)u = - 10 cm
m = 3 (virtual image)u = - 10 cmR = ?
m = 3 (virtual image)u = - 10 cmR = ?We know that
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cm
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd1/v + 1/u = 1/f
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd1/v + 1/u = 1/f1/30 + 1/(-10) = 1/f
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd1/v + 1/u = 1/f1/30 + 1/(-10) = 1/f-20/300 = 1/f
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd1/v + 1/u = 1/f1/30 + 1/(-10) = 1/f-20/300 = 1/ff = - 15 cm
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd1/v + 1/u = 1/f1/30 + 1/(-10) = 1/f-20/300 = 1/ff = - 15 cmRadius of curvature = R = 2f
m = 3 (virtual image)u = - 10 cmR = ?We know thatm = - (v/u)3 = -v/(-10)V = 30 cmAnd1/v + 1/u = 1/f1/30 + 1/(-10) = 1/f-20/300 = 1/ff = - 15 cmRadius of curvature = R = 2f= 2 × (-15) = - 30 cm
Explanation:
plz mark my answer as brainliest.
➡Given,
Magnification, m=3
Object distance, u=10cm
We know,
Magnification, m=−uv
➡3= −10−v
⇒ v=30cm
From mirror formula,
f1 = v1 + u1
f1 = 301 − 101
➡= 30×10
➡10−30
➡= 300−20