Math, asked by Sobhan2509, 1 year ago

A concrete mixture is pouring on ground at the rate of 8 cm³/sec to form a cone in such a way that the height of the cone is always 1/4th of the radius at the time. Find the rate of increase of the height, when the radius is 8 cm.

Answers

Answered by Hamzahsan
0

Answer:

edged feast state retry tree gets dyed dry cf

Answered by sushiladevi4418
0

Answer:

The value of rate of increase of the height =\frac{\mathrm{d} H}{\mathrm{d} t}=\frac{1}{8\pi }\frac{cm}{sec}.

Step-by-step explanation:

given data in question:

 Rate of pouring a mixture =rate of change of volume =8 \frac{cm^{3}}{sec}

\Rightarrow \frac{\mathrm{d} V}{\mathrm{d} t}= 8 \frac{cm^{3}}{sec}

Also given H=\frac{1}{4}R

             \Rightarrow R=4H

Where R= radius of a cone

           H = height of a cone

As we know that the formula of volume of cone =V=\frac{1}{3}\pi R^{2} H

Substitue the value of R= 4H

\Rightarrow V=\frac{1}{3}\pi \left ( 4H \right )^{2} H

\Rightarrow V=\frac{1}{3}\pi \times 16H^{3}

Now,Differentiate the volume with respect to time

\Rightarrow \frac{\mathrm{d} V}{\mathrm{d} t}=\frac{1}{3}\pi \times 16\frac{\mathrm{d} H^{3}}{\mathrm{d} t}

 \Rightarrow \frac{\mathrm{d} V}{\mathrm{d} t}=\frac{1}{3}\pi \times 16\times 3H^{2}\frac{\mathrm{d} H}{\mathrm{d} t}

\Rightarrow 8=\frac{1}{3}\pi \times 16\times 3\left ( \frac{R}{4} \right )^{2}\frac{\mathrm{d} H}{\mathrm{d} t}

Put the value of R=8 cm

\Rightarrow 8=\frac{1}{3}\pi \times 16\times 3\left ( \frac{8}{4} \right )^{2}\frac{\mathrm{d} H}{\mathrm{d} t}

\Rightarrow \frac{\mathrm{d} H}{\mathrm{d} t}=\frac{1}{8\pi }

Therefore the value of rate of increase of the height =\frac{\mathrm{d} H}{\mathrm{d} t}=\frac{1}{8\pi }

Similar questions