Physics, asked by rishi5296, 11 months ago

A conducting rod contains 8.5 × 1028 electrons/m3. Calculate its resistivity at room temperature and also the mobility of electrons if the collision time for electron scattering is 2 × 10–14 sec.   

Answers

Answered by roshinik1219
7

Given:

  • Number of electrons (n) = 8.5 \times 10^{28} \ electrons/m^3
  • Collision time ( \tau ) = 2 \times  10^{-14} sec.

To Find:

  • Electrical resistivity
  • Mobility of electrons

Solution:

Electrical conductivity is given by

             \sigma = \frac{n e^2 \tau}{m}

             \sigma = \frac{8.5 \times 10^{28} \times (1.6 \times 10^{-19})^2 \times 2 \times 10^{-14}}{9.11 \times 10^{-31}}

             \sigma = 4.77 \times 10^7 \Omega^{-1} m{-1}

Electrical resistivity is given by

             \rho = \frac{1}{\sigma}

            \rho = \frac{1}{4.77 \times 10^7 }

           \rho = 2.09 \times 10^{-8} \Omega m

Mobility of electron is given by

            \mu = \frac{\sigma}{ne}

            \mu = \frac{4.77 \times 10^7}{8.85 \time s10^{28} \times 1.6 \times 10^{-19}}

            \mu = 3.512 \times 10^{-3} m^2 V^{-1} s^{-1}

Thus,

           Electrical resistivity \rho = 2.09 \times 10^{-8} \Omega m

          Mobility of electron \mu = 3.512 \times 10^{-3} m^2 V^{-1} s^{-1}

Similar questions