Physics, asked by yee32707, 2 months ago

A Conducting solid sphere of radius R has total charge Q on it. The electric potential at a point at a distance r from centre varies as(r Options:
1. r⁰
2. 1/r
3. 1/r²
4. 1/r³
Please send ne correct answer
Urgent
Correct answer = brainliest

Answers

Answered by nirman95
10

Given:

A Conducting solid sphere of radius R has total charge Q on it.

To find:

Electric potential at distance r from centre

Calculation:

First of all, the question has clearly mentioned about a CONDUCTING SOLID SPHERE, so we will do as follows:

When r > R (R - radius of sphere)

 \rm \displaystyle\int_{0}^{V} dV = - \int_{ \infty}^{r} E  \: dr

 \rm  \implies\displaystyle\int_{0}^{V} dV =  \int_{ r}^{ \infty} E  \: dr

 \rm  \implies\displaystyle V - 0 =  \int_{ r}^{ \infty} E  \: dr

 \rm  \implies\displaystyle V  =  \int_{ r}^{ \infty} E  \: dr

 \rm  \implies\displaystyle V  =  \int_{ r}^{ \infty}  \dfrac{kq}{ {r}^{2} }   \: dr

 \rm  \implies\displaystyle V  =  kq\int_{ r}^{ \infty}  \dfrac{1}{ {r}^{2} }   \: dr

 \rm  \implies\displaystyle V  =  kq \bigg \{ \frac{ - 1}{r}  \bigg \}_{ r}^{ \infty}

 \rm  \implies\displaystyle V  =  kq \bigg \{ \frac{  1}{r}  \bigg \}_{ \infty}^{r}

 \rm  \implies\displaystyle V  =  kq \bigg \{ \frac{  1}{r}   -  \frac{1}{ \infty} \bigg \}

 \rm  \implies\displaystyle V  =  kq \bigg \{ \frac{  1}{r}   - 0\bigg \}

 \rm  \implies\displaystyle V  =  \frac{kq}{r}

 \rm  \implies\displaystyle V  =  \frac{q}{4\pi  \epsilon_{0}r}

 \rm  \implies\displaystyle V   \propto  \frac{1}{r}

So, OPTION 2) IS CORRECT.

Similar questions