Math, asked by foreverbelieber2515, 3 months ago

A cone and a cylinder are of same height, if the diameter of their bases are in the ratio 3:2 , find the ratio of their volumes.​

Answers

Answered by EliteZeal
20

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • A cone and a cylinder are of same height

  • Diameter of their bases are in the ratio 3:2

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Ratio of their volumes

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Given that , Diameter of cone and cylinder is in the ratio 3:2

 \:\:

  • Let the Diameter of cone be "3d"

  • Let the Diameter of cylinder be "2d"

 \:\:

Also given that , the height of cone and cylinder are equal

 \:\:

  • Let the height of cone & cylinder be "H"

 \:\:

 \sf { \boxed { Radius  = \dfrac { Diameter } { 2 }} }

 \:\:

  •  \sf Radius_{\bf{\red { cone } }} \: = \dfrac { 3d } { 2 }

 \:\:

  •  \sf  Radius_{\bf{\green{ cylinder } }} \: = \dfrac { 2d } { 2 }

 \:\:

 \underline{\bold{\texttt{Volume of cone :}}}

 \:\:

 \sf \dfrac{ 1 } { 3 } \times \pi r ^2 h ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • r = Radius

  • h = Height

 \:\:

 \underline{\bold{\texttt{Volume of given cone :}}}

 \:\:

  •  \sf r = \dfrac { 3d } { 2 }

  • h = H

 \:\:

Putting the above values in ⓵

 \:\:

 \sf \dfrac { 1 } { 3 } \times \pi r ^2 h

 \:\:

 \sf \dfrac { 1 } { 3 } \times \pi \times \bigg(\dfrac { 3d } { 2 } \bigg)^2 \times H ⚊⚊⚊⚊ ⓶

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \underline{\bold{\texttt{Volume of cylinder :}}}

 \:\:

 \sf \pi (r')^2 h' ⚊⚊⚊⚊ ⓷

 \:\:

Where ,

 \:\:

  • r' = Radius

  • h' = Height

 \:\:

 \underline{\bold{\texttt{Volume of given cylinder :}}}

 \:\:

  •  \sf r' = \dfrac { 2d } { 2 }

  • h' = H

 \:\:

Putting the above values in ⓷

 \:\:

 \sf \pi (r')^2 h'

 \:\:

 \sf \pi  \times \bigg(\dfrac { 2d } { 2 }\bigg)^2 \times H ⚊⚊⚊⚊ ⓸

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \underline{\bold{\texttt{Ratio of volume of cone \& cylinder :}}}

 \:\:

 \sf\bigg\lgroup \dfrac { Volume \: of \: Cone } { Volume \: of \: Cylinder } \bigg\rgroup ⚊⚊⚊⚊ ⓹

 \:\:

Putting the values from ⓶ & ⓸ to ⓹

 \:\:

 \sf \bigg\lgroup\dfrac { Volume \: of \: Cone } { Volume \: of \: Cylinder }\bigg\rgroup

 \:\:

 \sf \dfrac { \bigg( \dfrac{ 1 } { 3 } \times \pi \times \dfrac { 3d } { 2 } ^2 \times H\bigg)} {\bigg( \pi  \times \dfrac { 2d } { 2 }^2 \times H\bigg)}

 \:\:

 \sf \dfrac {\bigg( \dfrac { 1 } { 3 } \times \dfrac { 3d } { 2 } ^2\bigg) } { \bigg(d ^2\bigg) }

 \:\:

 \sf \dfrac {\bigg( \dfrac{ 1 } { 3 } \times \dfrac{ 9d ^2 } { 4 } \bigg) }{\bigg( d ^2\bigg) }

 \:\:

 \sf \dfrac {\bigg( \dfrac {3d ^2 } { 4 } \bigg)} { \bigg(d ^2\bigg) }

 \:\:

 \sf \bigg\lgroup\dfrac { 3d ^2 } { 4 } \times \dfrac { 1 } { d ^2 } \bigg\rgroup

 \:\:

 \sf \dfrac { 3 } { 4 }

 \:\:

  • Hence the ratio of volumes of cone and cylinder is 3:4

 \:\:

Answered by bishayiasmita
3

The ratio of volumes is 3:4

Attachments:
Similar questions