Math, asked by vanessar25, 2 months ago

A cone has a height of 8 units and a total volume of 66.66pi units cubed. What is the radius?
Please only type in the correct answer if you know how to do it!!!

Answers

Answered by 12thpáìn
64

Given

  • Height of Cone = 8 units
  • Volume of Cone= 66.66π units

To Find

  • Radius of Cone

We know that

 \boxed{ \bf{Volume~ of~ Cone = πr²\dfrac{h}{3}}}

  • Putting the given value in formula we get

{~~~~~~:~~\implies \sf66.66\pi = \pi  \times {r}^{2}  \times   \dfrac{8}{3} }

{~~~~~~:~~\implies \sf66.66 \cancel{\pi }=  \cancel{\pi } \times {r}^{2}  \times   \dfrac{8}{3} }

{~~~~~~:~~\implies \sf   {r}^{2}  =  \dfrac{66.66 \times 3}{8}  }

{~~~~~~:~~\implies \sf   {r}^{2}     ≈ \cancel{\dfrac{  \:  \: 200 \:  \:  \: }{ \: 8 \:  \:  \: }  }}

{~~~~~~:~~\implies \sf   {r}^{2}     ≈ 25  }

{~~~~~~:~~\implies \sf   r =  \sqrt{25}   }

{~~~~~~:~~\implies \sf   r =  5   }

Hance The Radius of Cone is 5 unit's.

Figure

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r= 5~ unit's}}\put(9.5,10){\sf{h=8~ unit's}}\end{picture}

Similar questions