Math, asked by sbg2673gmailcom, 2 months ago


A cone
has area of base as 154 cm²
and height
10 cm. find it stant height.​

Answers

Answered by narulasimran020
1

Answer:

10.59 cm

Step-by-step explanation:

l^2=r^2+h^2

l is equal to under root r square + h square

Answered by OyeeKanak
22

Question:-

  • A cone has area of base as 154 cm² and height 10 cm. find it stant height.

Given:-

  • Area of base 154 cm²
  • Height is 10 cm

To find:-

  • Slant height

Solution:-

We will find the radius first,

➥\pi \: r = 154 {cm}^{2}

➥ \frac{22}{7}  \times r = 154 \:

➥ \: r =  \frac{154 \times 7}{22}

➥r = 49 \: cm

 \large{ \boxed{ \underline{ \mathfrak{ \pink{Therefore  \: r \:  is \:  49  \: cm.}}}}}

 \bf \: Formula \:  to \:  find \:  slant  \: height :-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➥s =  \sqrt{( {r}^{2} +  {h}^{2})  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➥ \sqrt{( {49)}^{2}  + ( {10})^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➥ \sqrt{(2,401 + 100)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➥ \sqrt{2501}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➥50.00 \:  \: cm

Therefore the slant height is 50.00 cm

Similar questions