Math, asked by devendarreddy80696, 10 months ago

A cone height 240m and radias
of base 6om is made up of
modelling clay A child reshapes within
the form of a sphone find the radius
of sphere?​

Answers

Answered by BrainlyConqueror0901
51

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Radius\:of\:sphere=60\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Height \: of \: cone = 240 \: m \\  \\ \tt:  \implies Radius \: of \: cone = 60 \: m \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Radius \: of \: sphere  \: form= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: cone =  \frac{1}{3} \pi {r}^{2} h \\  \\ \tt:  \implies Volume \: of \: cone = \frac{1}{3}  \times \pi  \times {60}^{2}  \times 240 \\  \\ \tt:  \implies Volume \: of \: cone = \frac{1}{3}  \times \pi \times 3600 \times240 \\  \\   \green{\tt:  \implies Volume \: of \: cone =28800\pi \:  {m}^{3}}  \\  \\  \bold{As \: according \: to \: question}  \\  \tt:  \implies Volume \: of \: sphere  = Volume \: of \: cone \\  \\ \tt:  \implies Volume \: of \: sphere  =28800\pi \\  \\  \tt:  \implies  \frac{4}{3} \pi {r}^{3}  = 28800\pi  \\  \\ \tt:  \implies {r}^{3}  =  \frac{28800\pi \times 3}{4\pi}  \\  \\ \tt:  \implies {r}^{3}  =21600 \\  \\ \tt:  \implies {r}  =  \sqrt[3]{216000}  \\  \\ \green{\tt:  \implies {r}  =60 \: m}\\\\ \green{\tt\therefore Radius\:of\:sphere\:form\:is\:60\:m}

Answered by Saby123
66

</p><p>\huge{\tt{\pink{Hello!!! }}}

</p><p>\huge{\red{\boxed{\boxed{Volume_{Cone} = \frac{1}{3} \pi {r}^2 h }}}}

[tex] \tt{ \purple{where = > \begin{cases}

r & \text{radius} \\

h & \text{height}

\end{cases}}}[/tex]

Volume Of Cone = Volume Of Sphere

</p><p>\huge{\blue{\boxed{\boxed{Volume_{Sphere} = 4 \pi {r}^3 }}}}

Hence ,

 \tt{ \orange{ \frac{1}{3}\pi {r}^{2}h = 4\pi {r}^{3}  =  &gt; r \:  =  \:  \frac{h}{12} = 20m   }}

Similar questions