A cone of height 16cm and volume 2948 cm3 floats in a liquid of density 3.2g/cm3 such that its base lies below the surface of the liquid
Answers
Explanation:
H=16cm , volume V=2948cm^3V=2948cm
3
V=2948=\dfrac{\pi R^2H}{3}V=2948=
3
πR
2
H
R^2=\dfrac{3\times 2948}{\pi H}R
2
=
πH
3×2948
....(1)
The area of cross section of conical region above the liquid surface is 6cm^26cm
2
.
The the radius of that section be r , 6=\pi r^26=πr
2
r^2=\dfrac{6}{\pi}r
2
=
π
6
....(2)
Let the height of that cone be h , Now the triangle ABCABC and ADA_2ADA
2
are similar so \dfrac{R}{r}=\dfrac{H}{h}
r
R
=
h
H
Using the equation 1 and 2,
we get h=1.67 cmh=1.67cm
So the volume of cylinder immersed into the liquid V_1=2948-\dfrac{\pi r^2h}{3}=2944.66cm^3V
1
=2948−
3
πr
2
h
=2944.66cm
3
Weight of liquid =buoyancy force
V\times \rho_{cone}\times g=V_1\times \rho_{l}\times gV×ρ
cone
×g=V
1
×ρ
l
×g
2948\times \rho_{cone}=2944.66\times 3.22948×ρ
cone
=2944.66×3.2
\rho_{cone}=3.196cm^{-3}ρ
cone
=3.196cm
−3