Math, asked by megasonicxyz, 1 year ago

a cone of height 24 cm and radius of base 6 cm is made up of modelling clay.a child reshapes it in the form of a sphere .find the radius of the sphere.i know the answer but plz give a proper explanation.

Answers

Answered by Mankuthemonkey01
66
Volume of a cone = 1/3 × πr²h


Here, h = 24
r = 6

=> volume =
 \frac{1}{3}  \times \pi {r}^{2} h \\  \\  =  >  \frac{1}{3}  \times  \pi  \times  {6}^{2}  \times 24 \\  \\  =  \frac{1}{3}  \times  \pi \times 36 \times 24 \\  \\  =  >  \pi  \times 36 \times 8 \\  \\  288\pi


The volume of cone = 288π cm³


Now it's reshaped into a sphere. After reshaping, the volume would be the same, since it is completely reshaped.
=> Volume of sphere = 288π cm³

We know that volume of sphere = 4/3 × πr³

=> 4/3 × πr³ = 288π
 \frac{4}{3} \pi {r}^{3}  = 288\pi \\  \\  \\  =  >  {r}^{3}  =  288\pi \div  \frac{4\pi}{3}  \\  \\  =  >  {r}^{3}  = 288\pi \times  \frac{3}{4\pi}  \\  \\  =  >  {r}^{3}  = 72 \times 3 \\  \\  =  >  {r}^{  3}  = 216 \\  \\  =  > r =  \sqrt[3]{216}  \\  \\  =  > r = 6



Answer :- Radius of sphere is 6 cm

Mankuthemonkey01: Thank you :)
Anonymous: Awesome answer (^_^)
sevanth52: shut your phone
Mankuthemonkey01: Thanks both of you ❤️
megasonicxyz: ok tnx bro
Mankuthemonkey01: Welcome
Answered by Anonymous
99
 \sf {\large{Question: }}

 \sf{ \green{A \: Cone \: of \: Height \: 24 \: cm \: and \: Radius \: of \: Base \: 6 \: cm}} \\ \sf{ \red{is \: made \: up \: of \: modelling \: clay \: a \: child \: Reshapes \: it}} \\ \sf{ \blue{in \: the \: form \: of \: a \: Sphere.}} \\ \sf{ \blue{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: find \: the \: radius \: of \: the \: sphere ?}}

 \sf{ \large{Method \: of \: Solution:}}

 \sf{ \red{Given}}

 \implies{ \sf{ \blue{Height \: of \: the \: cone \: = 24cm}}} \\ \\ \implies{ \sf{ \green{ Radius \: \: of \: the \: cone \: = 6cm}}} \\ \\ \\ \implies{ \sf{ \red {Volume \: of \: the \: cone = \frac{1}{3} \times \frac{22}{7} \times ( {6}^{2} )\times 24}}} \\ \\ \\ \implies{ \sf{ \red {Volume \: of \: the \: cone = 905.14cm}}}

 \sf{ \fbox{ \blue{According \: to \: the \: Question:}}}

\sf{\red{Volume \: of \: the \: Sphere \: = \frac{3}{4} \times \frac{22}{7} \times ({r}^{3})}}

\sf{\blue{Volume \: of \: the \: Sphere \: = \frac{3}{4} \times \frac{3}{4} \times ({r}^{3})=905.14}}

\sf{\green{Volume \: of \: the \: Sphere \: = \frac{3}{4} \times \frac{22}{7} \times ({r}^{3})=905.14}} \\ \\ \sf{\red{Volume \: of \: the \: Sphere \: = \frac{66}{28} \times ( {r}^{3} ) = 905.14 }} \\ \\ \\ \sf{\green{Volume \: of \: the \: Sphere = {r}^{3} {\implies \: 216}}} \\ \\ \\ \sf{\blue{Volume \: of \: the \: Sphere = (r) {\implies 6cm}}}

 \sf{ \red{ \fbox{Hence, \: Required}}} \sf{ \green{ \fbox{ Radius \: of \: Sphere}}} \sf{ \blue{ \fbox{ = 6cm}}}

Anonymous: Thank You!
KHUSHIKANTROD: my pleasure
Anonymous: ✅✅
smartyAnushka: Nice...☺
dasm212003gmailcom: very nice answer wonderful excellent
Anonymous: Thank you
megasonicxyz: tnx bro
megasonicxyz: may ur gf bless u
Anonymous: :-\
Similar questions