Math, asked by akhileshawasthi1976, 8 months ago

A cone of height 24cm and radius of base 6cm is made up of modelling clay. Find volume of cone (pie = 22/7).

Answers

Answered by Anonymous
29

Answer:

Volume of the cone is 905.14 cm³ (approx).

Step-by-step explanation:

Given :-

  • A cone of height 24 cm and radius of base 6 cm is made up modelling day.

To find :-

  • Volume of the cone.

Solution :-

  • Height = 24 cm
  • Radius = 6 cm

Formula used :

{\boxed{\sf{Volume\:of\:cone=\dfrac{1}{3}\pi\:r^2h}}}

Volume of the cone,

= ⅓ πr²h

=[ ⅓ × (22/7)×6² × 24 ] cm³

= (22×12×24)/7 cm³

= 6336/7 cm³

= 905.14 cm³ (approx)

_____________________

Additional Info :-

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of Hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by ZAYNN
26

Answer:

  • Height = 24 cm
  • Radius = 6 cm

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm}</p><p>\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{24 cm}}\put(3,2){\line(0,2){4.5}}\put(1.4,1.6){\sf{7 cm}}\qbezier(.185,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf Volume\:of\:Cone=\dfrac{1}{3}\pi r^2 h\\\\\\:\implies\sf Volume\:of\:Cone= \dfrac{1}{3}  \times \dfrac{22}{7} \times 6 \times 6 \times 24\\\\\\:\implies\sf Volume\:of\:Cone= \dfrac{22}{7} \times 36 \times 8\\\\\\:\implies\sf Volume\:of\:Cone \approx 905.14 \: {cm}^{3}

Similar questions