Math, asked by kudalsameer009, 5 months ago

A cone of height 24cm and radius of base 6cm is made up of modelling clay.child reshapes it in the form sphere .find the radius of the sphere​

Answers

Answered by SarcasticL0ve
104

Given: Radius & Height of cone is 6 cm and 24 cm respectively.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

》Let's consider the radius of sphere be R cm.

⠀⠀⠀⠀

\underline{\boldsymbol{\bigstar\:According\:to\:the\:Question}}\\\\

  • A cone is reshaped in the form of sphere.

⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀

:\implies\sf Volume\:of\:cone = Volume\:of\:cylinder\\ \\ \\ :\implies\sf \dfrac{1}{3} \times \cancel{\dfrac{22}{7}} \times (6)^2 \times 24 = \dfrac{4}{3} \times \cancel{\dfrac{22}{7}} \times R^3\\ \\ \\ :\implies\sf \dfrac{1}{\cancel{3}}  \times 36 \times \cancel{24} = \dfrac{4}{3} \times R^3\\ \\ \\ :\implies\sf  36 \times 8 = \dfrac{4}{3} \times R^3\\ \\ \\ :\implies\sf  R^3 = 36 \times \cancel{8}  \times \dfrac{3}{\cancel{4}}\\ \\ \\:\implies\sf R^3 = 36 \times 2 \times 3\\ \\ \\:\implies\sf R^3 = 216\\ \\ \\:\implies\sf \sqrt[3]{R^3} = \sqrt[3]{216} \\ \\ \\:\implies{\underline{\boxed{\frak{\purple{R = 6\:cm}}}}}\\\\\\ \therefore\:{\underline{\sf{Radius\:of\:sphere\:formed\:is\: {\textsf{\textbf{6\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\qquad\qquad\boxed{\underline{\underline{\bf{\pink{\bigstar \: Formulas\:used\:\bigstar}}}}} \\\\

  • \sf Volume\:of\:cone = \bf{\dfrac{1}{3} \pi r^2 h}

  • \sf Volume\:of\:sphere = \bf{\dfrac{4}{3} \pi r^3}

Anonymous: Amazing
Answered by BrainlyHero420
120

Answer:

Given :-

  • A cone of height is 24 cm and radius of base is 6 cm and its is made up of modelling clay and child reshapes it in the form of sphere.

To Find :-

  • What is the radius of the sphere.

Formula Used :-

\sf\boxed{\bold{\small{Volume\: of\: cone\: =\: \dfrac{1}{3}{\pi}{r}^{2}h}}}

\sf\boxed{\bold{\small{Volume\: of\: sphere\: =\: \dfrac{4}{3}{\pi}{r}^{3}}}}

Solution :-

Let, the radius be r cm

First, we have to find the volume of cone,

Given :

  • Radius = 6 cm
  • Height = 24 cm

According to the question by using the formula we get,

\sf Volume\: of\: cone\: =\: \dfrac{1}{3} \times {\pi} \times {(6)}^{2} \times 24

\sf Volume\: of\: cone\: =\: \dfrac{1}{3} \times {\pi} \times 6 \times 6 \times 24

\sf Volume\: of\: cone\: =\: \dfrac{1}{\cancel{3}} \times {\pi} \times {\cancel{864}}

\bold{Volume\: of\: cone\: =\: 288{\pi}c{m}^{3}}

Now, according to the question,

\sf \dfrac{4}{3}{\cancel{\pi}}{r}^{3} =\: 288{\cancel{\pi}}

\sf \dfrac{4}{3} \times {r}^{3} =\: 288

\sf {r}^{3} =\: \dfrac{288 \times 3}{4}

\sf {r}^{3} =\: \dfrac{\cancel{864}}{\cancel{4}}

\sf {r}^{3} =\: 216

\sf r =\: \sqrt[3]{216}

\sf\bold{\red{r =\: 6\: cm}}

\therefore The radius of the sphere is 6 cm .


ShehnazGill: Fabulous! ^^"
Anonymous: Vgud !.. ✌️
Anonymous: G8!
manishrai207: Positive and positive terminals can be connected to each other in a circuit; *

1 point
Angelpriya80: Ñîçë
sriyamisra774: Undying gratitude.
HA7SH: Great : D
Similar questions