Math, asked by salimvahora36, 2 months ago

A cone of height 24cm and radius of the base 6cm is made up of moulding clay. A child reshaped it in the form of sphere, find the volume of sphere.(π=3.14)​

Answers

Answered by amansharma264
130

EXPLANATION.

Height of a cone = 24cm.

Radius of the base of the cone = 6cm.

A child reshape and form sphere.

As we know that,

⇒ Volume of cone = 1/3πr²h.

⇒ Volume of sphere = 4/3πr³.

⇒ Volume of cone = Volume of sphere.

⇒ 1/3πr²h = 4/3πr³.

Put the values in the equation, we get.

⇒ πr²h = 4πr³.

⇒ r²h = 4r³.

⇒ 6 x 6 x 24 = 4 x r³.

⇒ 6 x 6 x 6 = r³

⇒ (6)³ = r³.

r = 6cm.

⇒ Volume of sphere = 4/3πr³.

⇒ 4/3 x 3.14 x 6 x 6 x 6.

⇒ 2712.96/3 = 904.32cm³.

Volume of sphere = 904.32cm³.

Answered by Anonymous
153

Answer:

Given :-

  • A cone of height is 24 cm and radius of the base is 6 cm is made up of moulding clay.
  • A child reshaped it in the form of sphere. (π = 3.14)

To Find :-

  • What is the volume of sphere.

Formula Used :-

\clubsuit Volume of Cone :

\longmapsto \sf\boxed{\bold{\pink{Volume\: of\: Cone =\: \dfrac{1}{3}{\pi}{r}^{2}h}}}

\clubsuit Volume of Sphere :

\longmapsto \sf\boxed{\bold{\pink{Volume\: of\: Sphere =\: \dfrac{4}{3}{\pi}{r}^{3}}}}

Solution :-

First, we have to find the volume of the cone :

Given :

  • Height = 24 cm
  • Radius = 6 cm

According to the question by using the formula we get,

\implies \sf Volume\: of\: Cone =\: \dfrac{1}{3}{\pi} \times {(6)}^{2} \times 24\\

\implies \sf Volume\: of\: Cone =\: \dfrac{1}{3}{\pi} \times 36 \times 24\\

\implies \sf Volume\: of\: Cone =\: \dfrac{1}{\cancel{3}}{\pi} \times {\cancel{864}}\\

\implies \sf\bold{\green{Volume\: of\: Cone =\: 288{\pi}}}\\

Now, we have to find the radius :

\implies \sf \dfrac{4}{3}{\cancel{\pi}} \times {r}^{3} =\: 288{\cancel{\pi}}\\

\implies \sf \dfrac{4}{3} \times {r}^{3} =\: 288\\

\implies \sf {r}^{3} =\: \dfrac{288 \times 3}{4}

\implies \sf {r}^{3} =\: \dfrac{\cancel{864}}{\cancel{4}}

\implies \sf {r}^{3} =\: 216

\implies \sf r =\: \sqrt[3]{216}

\implies \sf\bold{\purple{r =\: 6\: cm}}

Now, we have to find the volume of sphere :

Given :

  • Radius = 6 cm
  • π = 3.14

According to the question by using the formula we get,

\leadsto \sf Volume\: of\: Sphere =\: \dfrac{4}{3} \times 3.14 \times {(6)}^{3}\\

\leadsto \sf Volume\: of\: Sphere =\: \dfrac{4}{3} \times 3.14 \times 216\\

\leadsto \sf Volume\: of\: Sphere =\: \dfrac{4}{\cancel{3}} \times {\cancel{678.24}}

\leadsto \sf Volume\: of\: Sphere =\: 4 \times 226.08

\leadsto\sf\bold{\red{Volume\: of\: Sphere =\: 904.32\: {cm}^{3}}}

\therefore The volume of sphere is 904.32 cm³.

Similar questions