Math, asked by tongbrammalemnganba, 5 months ago

A cone of height 25cm and radius of base 6cm is made up of modelling clay. A child reshapes it in the form of a sphere, the radius of the sphere​

Answers

Answered by SarcasticL0ve
60

\sf Given\begin{cases} & \sf{Height\;of\;cone = \bf{25\;cm}}  \\ & \sf{Radius\;of\;cone = \bf{6\;cm}} \end{cases}\\ \\

To find: Radius of sphere?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • A child reshapes a cone in the form of a sphere.

⠀⠀

Therefore,

⠀⠀

:\implies\sf Volume_{\;(sphere)} = Volume_{\;(cone)}\\ \\

:\implies\sf \dfrac{4}{3} \pi r^3 = \dfrac{1}{3} \pi r^2h\\ \\

:\implies\sf \dfrac{4}{3} \times \cancel{\pi} \times r^3 = \dfrac{1}{3} \times \cancel{\pi} \times (6)^2 \times 25\\ \\

:\implies\sf \dfrac{4}{3} \times r^3 = \dfrac{1}{3} \times 36 \times 25\\ \\

:\implies\sf \dfrac{4}{3} \times r^3 = \dfrac{1}{3} \times 900\\ \\

:\implies\sf r^3 =  \dfrac{1}{ \cancel{3}} \times 900 \times \dfrac{ \cancel{3}}{4}\\ \\

:\implies\sf r^3 = \cancel{ \dfrac{900}{4}}\\ \\

:\implies\sf r^3 = 225\\ \\

:\implies\sf \sqrt[3]{r^3} = \sqrt[3]{225}\\ \\

:\implies{\underline{\boxed{\frak{\purple{r = 6.082\;cm}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;radius\;of\;sphere\;is\; {\textsf{\textbf{6.082\;cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\quad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area\ formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Answered by BrainlyHero420
45

Answer:

Given :-

  • A cone of height is 25 cm and radius of the base is 6 cm is made up of modelling clay.
  • A child reshapes it in the form of a sphere.

To Find :-

  • What is the radius of the sphere.

Solution :-

Given :

  • Height = 25 cm
  • Radius = 6 cm

First, we have to find the volume of cone,

We know that,

\boxed{\bold{\large{Volume\: of\: cone\: =\: \dfrac{1}{3} {\pi}{r}^{2}h}}}

According to the question by using the formula we get,

\dfrac{1}{3} {\pi} \times {(6)}^{2} \times 25

\dfrac{1}{3} {\pi} \times 36 \times 25

300 {\pi} cm³

Now,

Let, the radius of the sphere be r

We know that,

\boxed{\bold{\large{Volume\: of\: sphere\: =\: \dfrac{4}{3} {\pi}{r}^{3}}}}

Now, we know that,

Volume of sphere = Volume of cone

According to the question by using the formula we get,

\dfrac{4}{3}{\pi}{r}^{3} = 300{\pi}

\dfrac{4}{3}{r}^{3} = 300

{r}^{3} = \dfrac{300 \times 3}{4}

{r}^{3} = 75 \times 3

{r}^{3} = 225

\sqrt[3]{{r}^{3}} = \sqrt[3]{225}

r = 6.082 cm

\therefore The radius of the sphere is 6.082 cm .

Similar questions