Math, asked by sanctifypala4513, 5 months ago

A cone of height 25cms and radius of base 6cm is made up of modelling day . A child reshapes it in the form of a sphere . The radius of the sphere is?​

Answers

Answered by brainlyofficial11
124

Aɴsʀ

we have,

  • height of cone, h = 25cm
  • radius of cone, r = 6cm

we know that,

 \boxed{ \bold{volume \: of \: cone =  \frac{1}{3} \pi {r}^{2}h  } } \\

here, let the volume of cone be V

 \bold{\implies V =  \frac{1}{3}  \pi {r}^{2} h}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \bold{  \implies \:V =  \frac{1}{ \cancel{3}}  \times  \frac{22}{7} \times \cancel{ 6 }\times 6 \times 25  } \\  \\   \bold{\implies V =  \frac{22 \times2   \times  6 \times 25}{7}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \implies\boxed{ \red{ \bold{  V =  \frac{6600}{7}{cm}^{3}   }}}  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_________________________

and we know that,

 \boxed{ \bold{volume \: of \: sphere =  \frac{4}{3} \pi {r}^{3}  }} \\

here, let the volume of sphere be v

Since cone made up of modelling clay is reshaped into sphere, so in this case volume remains constant.

Hence, volume of cone = volume of sphere

  • let the radius of sphere be R

 \bold{ \implies v =  \frac{6600}{7}{cm}^{3}   }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \:   \:  \:  \:     \:  \:  \:  \:  \:\\  \\  \bold{ \implies  \frac{6600}{7}  =  \frac{4}{3}  \pi  {R}^{ 3} } \:    \:   \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \\  \\  \bold{ \implies \frac{6600}{ \cancel{7}}   =  \frac{4}{3}  \times  \frac{22}{ \cancel{7}} \times  {R}^{3}  }  \:  \:  \:   \: \: \:  \:  \:  \:  \:  \\  \\  \bold{ \implies R^{3} =  \frac{ \cancel{6600} \times 3}{ \cancel{4} \times 22  }  }  \:  \:  \:  \:  \:  \:  \:  \: \:   \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \\  \\  \bold{ \implies R^{3} =  \frac{ \cancel{1650} \times 3}{ \cancel{22}}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \\  \\  \bold{  \implies{R}^{3} = 75 \times 3 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \:  \: \\  \\   \bold{\implies  {R}^{3} = 225 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \: \:  \:  \:  \: \:   \\  \\   \implies \boxed{ \pink{\bold{R =  \sqrt[3]{225}cm \:  \: or \:  \: 6.08cm}}}

so, radius of sphere is 3√225cm or 6.08cm

Similar questions