Math, asked by unnati4638, 1 year ago

A cone of height 8 m has a curved surface area 188.4 square metres.
Find its volume. (Take value of pie = 3.14.)​

Answers

Answered by varun000
121

Answer:

height of cone, h=8m

CSA of cone = 188.4 metre sq.

πrl=188.4 m^2

l=188.4/3.14 r

l= 60/ r

we know that,

{r}^{2}   =  {l}^{2}  -  {h }^{2}

r^2=(60/r)^2 -8^2

r^2 =3600/r^2 -64

r^4 + 64r^2 -3600=0

Let r^2 =R to Simplify the equation a little

R^2 + 64R -3600=0

Solving this ,we get;

R=36

therefore... r=6

Now, Volume of a cone :

{\pi {r}^{2} h} \div 3

=(3.14 *6*6*8)/3

=301.44 m^3

Step-by-step explanation:

volume \: of \: cone \:  =301.44 \:  {m}^{3}

Hope you get dear....

plz mark it as brainliest,if you find it helpful ...

Answered by Anonymous
243

Solution:

Given:

  • Height of the cone = 8 m
  • Curved surface area of cone = 188.4 sq. m

To Find:

  • Volume of cone.

Formula used:

  • \sf{Slant\;Height\;(l)=\sqrt{(Height)^{2}+(Radius)^{2}}}
  • \sf{Volume\;of\;cone=\dfrac{1}{3}\pi r^{2}h}

Let radius of cone be "r" and slant height be 'l'.

⇒ Curved surface area of cone = 188.4 sq. m

⇒ πrl = 188.4

We know that, \sf{Slant\;Height\;(l)=\sqrt{(Height)^{2}+(Radius)^{2}}}

\sf{\implies \pi r\big(\sqrt{r^{2}+h^{2}}\big)=188.4}

\sf{\implies 3.14\times r\sqrt{r^{2}+8^{2}}=188.4}

\sf{\implies r\sqrt{r^{2}+8^{2}}=60}

Now, squaring both the sides, we get

\sf{\implies r^{2}(r^{2}+8^{2})=60^{2}}

\sf{\implies r^{4}+64r^{2}=3600}

\sf{\implies r^{4}+64r^{2}-3600=0}

Now, by using splitting middle term method we solve this equation,

\sf{\implies r^{4}+64r^{2}-3600=0}

\sf{\implies r^{4}+100r^{2}-36r^{2}-3600=0}

\sf{\implies r^{2}(r^{2}+100)-36(r^{2}+100)=0}

\sf{\implies (r^{2}-36)(r^{2}+100)=0}

\sf{\implies r^{2}=36\;,-100}

As we know radius cannot be negative.

\sf{\implies r^{2}=36}

\sf{\implies r=6\;m}

∴ Radius of cone = 6 m

\sf{Now,\;volume\;of\;cone=\dfrac{1}{3}\pi r^{2}h}

\sf{\implies Volume=\dfrac{1}{3}\times 3.14\times 6\times 6\times 8}

\sf{\implies Volume=3.14\times 2\times 6\times 8}

\sf{\implies Volume=301.44\;m^{3}}

Hence,

  • Volume of cone = 301.44 m³
Similar questions