Math, asked by azhardukandar, 4 months ago

A cone of radius 10cm is cut into two parts by a plane through the mid point of its vertices axis parallel to the base .Find the ratio of the volume of the smaller cone and frustum of the cone​

Answers

Answered by Jiya6282
6

\red{\textbf{Answer :- 1:7}}

Step-by-step explanation:

radius \: of \: cone \:  = 10cm

Volume \:  of \:  cone= \:

 \LARGE\frac{1}{3} \small\pi {r}^{2}  _{1} \: h_{1}

 = \LARGE \frac{1}{3} \pi( \frac{r}{2}  {)} ^{2} \small \times \LARGE \frac{h}{2}

 = \LARGE \frac{1}{3} \pi( \frac{10}{2} {)}^{2} \small \times \LARGE \frac{h}{2}

 =\LARGE  \frac{25\pi \: h}{6} \small \:  {cm}^{3}

Volume \:  of  \: frustum  \: ABCD=

\LARGE \frac{1}{3} \small \pi h_{2}( {R}^{2}  +  {r}^{2}  + Rr)

 =\LARGE  \frac{1}{3} \pi \small\times  \LARGE \frac{h}{2} \small( {10}^{2}  +  {5}^{2}  + 10 \times 5)

 = \LARGE \frac{175\pi \: h}{6}

Required  \: ratio ,

= \:  \LARGE\frac{ \frac{25\pi \: h}{6} }{ \frac{175\pi \: h}{6} }  =  \frac{25}{175}

 = \LARGE \frac{1}{7}

\red{\textbf{ = 1:7}}

Similar questions