Math, asked by sachinsaji9555, 11 months ago

A conical military tent having diameter of the base 24 m and slant height of the tent is 13 m, find the curved surface area of the cone. [π = 227]

Answers

Answered by Anonymous
21

\sf\red{\underline{\underline{Answer:}}}

\sf{Curved \ surface \ area \ of \ tent \ is \ 490.29 \ cm^{2}}

\sf\orange{Given:}

\sf{For \ conical \ military \ tent,}

\sf{\implies{Diameter (d)=24 \ m}}

\sf{\implies{Slant \ Height(l)=13 \ m}}

\sf\pink{To \ find:}

\sf{Curved \ surface \ area \ of \ the \ cone.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Radius(r)=\frac{Diameter}{2}}

\sf{Radius (r)=\frac{24}{2}=12 \ m}

\boxed{\sf{Curved \ surface \ area \ of \ cone=\pi\times \ r\times \ l}}

\sf{\therefore{Curved \ surface \ area \ of \ tent=\frac{22}{7}\times12\times13}}

\sf{\therefore{Curved \ surface \ area \ of \ tent=\frac{22\times12\times13}{7}}}

\sf{\therefore{Curved \ surface \ area \ of \ tent=\frac{3432}{7}}}

\sf{\therefore{Curved \ surface \ area \ of \ tent=490.29 \ cm^{2}}}

\sf\purple{\tt{\therefore{Curved \ surface \ area \ of \ tent \ is \ 490.29 \ cm^{2}}}}

Answered by Anonymous
1

Given ,

Diameter of base of cone (d) = 24 m

Slant height of cone (l) = 13 m

So ,

Radius of base of cone (r) = 12 m

As we know that ,

The curved surface area of cone is given by

 \large \sf \underline{ \fbox{CSA \:  of  \: cone  = \pi rl}}

Thus ,

</p><p>\sf \Rightarrow </p><p> </p><p>CSA =  \frac{22}{7}  \times 12 \times 13 \\  \\</p><p>\sf \Rightarrow </p><p> </p><p> CSA =   \frac{3432}{7}  \\  \\</p><p>\sf \Rightarrow </p><p> </p><p> CSA =  490.2 \:  \:  {m}^{2}

 \therefore  \bold{  \sf \underline{The \:  curved \:  surface \:  area \:  of  \: cone  \: is \:  490.2  \:  \:  {m}^{2} }}

Similar questions