Math, asked by shree828, 7 months ago

A conical tent has the area of the base as 154m2 and its curved surface area as 550m2 , then the volume of the tent is :

Answers

Answered by Anonymous
35

Given :-

  • A conical tent has the area of the base as 154m² and its curved surface area as 550m² .

To Find :

  • Volume of tent = ?

Solution :

Let radius of conical tent be 'r' , height be 'h' and slant height be 'l'.

Finding radius of conical tent :

→ Base area of conical tent = πr²

→ 154 = 22/7 × r²

→ 154 × 7 = 22 × r²

→ 1078 = 22 × r²

→ 1078 ÷ 22 = r²

→ 49 = r²

→ r² = 49

→ r = √49

r = 7 m

Radius of the conical tent is 7 m.

★ Finding Slant Height of conical tent :

➻ C.S.A of cone = πrl

➻ 550 = 22/7 × 7 × l

➻ 550 = 22 × l

➻ 550 ÷ 22 = l

➻ 25 = l

l = 25 m

Slant Height of the conical tent is 25 m.

Finding Height of conical tent :

➺ (Slant Height)² = (Radius)² + (Height)²

➺ (l)² = (r)² + (h)²

➺ (25)² = (7)² + (h)²

➺ 625 = 49 + h²

➺ 625 - 49 = h²

➺ 576 = h²

➺ h = 576

➺ h = √576

h = 24 m

Height of the conical tent is 24 m.

Finding Volume of conical tent :

⊷ Volume of cone = ⅓ πr²h

⊷ Volume of cone = ⅓ × 22/7 × (7)² × 24

⊷ Volume of cone = ⅓ × 22/7 × 49 × 24

⊷ Volume of cone = ⅓ × 22 × 7 × 24

⊷ Volume of cone = 22 × 7 × 8

Volume of cone = 1232 m³

Volume of the conical tent is 1232 .

Answered by Anonymous
12

Given :

  • Area of the base of conical tent = 154 m²
  • Curved surface area = 550 m²

To Find :

  • Volume of the tent

Solution :

  • Let us find the radius of the base of tent :

  • Area of base = πr²

\leadsto \sf Base\:of\:radius\:=\:π{r}^{2} \\

\leadsto \sf 154\:=\: \dfrac{22}{7} \times {r}^{2} \\

\leadsto \sf {r}^{2}\:=\: \dfrac{154 \times 7}{22} \\

\leadsto \sf {r}^{2}\:=\: \dfrac{1078}{22} \\

\leadsto \sf {r}^{2}\:=\:49 \\

\leadsto \sf r\:=\: \sqrt{49} \\

\bigstar \: \large{\sf{\underline{\red{Radius\:=\: 7\:m}}}} \\ \\

_________________________________

  • Now , let us find slant height ' l ' of the conical tent :

  • CSA of cone = πrl

\leadsto \sf 550\:=\: \dfrac{22}{7} \times 7 \times l \\

\leadsto \sf l\:=\: \dfrac{550 \times 7}{ 22 \times 7} \\

\leadsto \sf l\:=\: \dfrac{550}{22} \\

\bigstar \: \large{\bf{\underline{\red{Slant\:height \:=\: 25\:m}}}} \\ \\

_________________________________

  • Now , let us find height of conical tent :

\leadsto \sf {(Slant\:height)}^{2}\:=\:{(radius)}^{2}\:+\:{(height)}^{2} \\

\leadsto \sf {(25)}^{2}\:=\: {(7)}^{2}\:+\:{(height)}^{2} \\

\leadsto \sf {(height)}^{2}\:=\:625\:-\:49 \\

\leadsto \sf {(height)}^{2}\:=\: 576 \\

\leadsto \sf height\:=\: \sqrt{576} \\

\bigstar \: \large{\sf{\underline{\red{Height\:=\:24\:m}}}} \\ \\

_________________________________

  • Now , let us find the volume of conical tent :

\bullet \: \large {\boxed{\sf{\red{Volume\:of\:cone\:=\: \dfrac{1}{3} \:π{r}^{2} h}}}} \\

\leadsto \sf Volume\:=\: \dfrac{1}{3} \times \dfrac{22}{7} \times {7}^{2} \times 24 \\

\leadsto \sf Volume\:=\: \dfrac{1}{3} \times \dfrac{22}{7} \times 49 \times 24 \\

\leadsto \sf Volume\:=\:22 \times 7 \times 8 \\

\leadsto \sf Volume\:=\: 22 \times 56 \\

\bigstar \: \large{\boxed{\sf{\pink{Volume\:=\:1232\:{m}^{3}}}}} \\ \\

  • Volume of the conical tent is 1232

_________________________

Answered by Anonymous
12

Given :

  • Area of the base of conical tent = 154 m²
  • Curved surface area = 550 m²

To Find :

  • Volume of the tent

Solution :

  • Let us find the radius of the base of tent :

  • Area of base = πr²

\leadsto \sf Base\:of\:radius\:=\:π{r}^{2} \\

\leadsto \sf 154\:=\: \dfrac{22}{7} \times {r}^{2} \\

\leadsto \sf {r}^{2}\:=\: \dfrac{154 \times 7}{22} \\

\leadsto \sf {r}^{2}\:=\: \dfrac{1078}{22} \\

\leadsto \sf {r}^{2}\:=\:49 \\

\leadsto \sf r\:=\: \sqrt{49} \\

\bigstar \: \large{\sf{\underline{\red{Radius\:=\: 7\:m}}}} \\ \\

_________________________________

  • Now , let us find slant height ' l ' of the conical tent :

  • CSA of cone = πrl

\leadsto \sf 550\:=\: \dfrac{22}{7} \times 7 \times l \\

\leadsto \sf l\:=\: \dfrac{550 \times 7}{ 22 \times 7} \\

\leadsto \sf l\:=\: \dfrac{550}{22} \\

\bigstar \: \large{\bf{\underline{\red{Slant\:height \:=\: 25\:m}}}} \\ \\

_________________________________

  • Now , let us find height of conical tent :

\leadsto \sf {(Slant\:height)}^{2}\:=\:{(radius)}^{2}\:+\:{(height)}^{2} \\

\leadsto \sf {(25)^{2}\:=\: {(7)}^{2}\:+\:{(height)}^{2} \\

\leadsto \sf {(height)}^{2}\:=\:625\:-\:49 \\

\leadsto \sf {(height)}^{2}\:=\: 576 \\

\leadsto \sf height\:=\: \sqrt{576} \\

\bigstar \: \large{\sf{\underline{\red{Height\:=\:24\:m}}}} \\ \\

_________________________________

  • Now , let us find the volume of conical tent :

\bullet \: \large {\boxed{\sf{\red{Volume\:of\:cone\:=\: \dfrac{1}{3} \:π{r}^{2} h}}}} \\

\leadsto \sf Volume\:=\: \dfrac{1}{3} \times \dfrac{22}{7} \times {7}^{2} \times 24 \\

\leadsto \sf Volume\:=\: \dfrac{1}{3} \times \dfrac{22}{7} \times 49 \times 24 \\

\leadsto \sf Volume\:=\:22 \times 7 \times 8 \\

\leadsto \sf Volume\:=\: 22 \times 56 \\

\bigstar \: \large{\boxed{\sf{\pink{Volume\:=\:1232\:{m}^{3}}}}} \\ \\

  • Volume of the conical tent is 1232

_________________________

Similar questions