Math, asked by kindaselfish, 2 months ago

a conical tent is 10m high and the radius of its base is 24m find the cuved surface area of the tent ​

Answers

Answered by Anonymous
483

\large\underline\bold\red{Given:-}

A conical tent is 10 m high, Height (h) = 10m. And, the radius of its base is 24 m, radius (r) = 24m.

\large\underline\bold\red{To\:Find:-}

The CSA(Curved surface area) of the conical tent.

\large\underline\bold\red{Solution:-}

Finding slant Height of the conical tent, let slant height be l .

Therefore,

:\implies\sf (l)^2 = (h)^2 + (r)^2 \\\\\\:\implies\sf l^2 = 10^2 + 24^2 \\\\\\:\implies\sf  l^2 = 100 + 576\\\\\\:\implies\sf l^2 = 676\\\\\\:\implies\sf  l = \sqrt{676}\\\\\\:\implies{\underline{\boxed{\frak{\pink{l = 26\;m}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \; slant\; height\; of \; conical\; tent \; is \; \bf{26\;m }.}}}⠀⠀

\rule{250px}{.3ex}⠀⠀⠀

\large{\underline\bold\red{\tt{As\;we\;know\;that,}}}\\ \\

\star\;\boxed{\sf{\purple{CSA_{\:(cone)} = \pi rl}}}

where,

r is the radius of the cone and l is the slant Height of the cone.

Therefore,

:\implies\sf CSA_{\:(tent)} = \bigg(\dfrac{22}{7} \times 24 \times 26\bigg)\\\\\\:\implies\sf CSA_{\:(tent)} = \bigg(\dfrac{22}{7} \times 624  \bigg)\\\\\\:\implies{\underline{\boxed{\tt{\red{ CSA_{\:(tent)} = 1961\;m^2}}}}}\;\bigstar

\therefore{\underline\red{\sf{Hence, \;CSA\; of \; conical\; tent \; is \; \bf{1961\;m^2 }.}}}⠀⠀

\rule{300px}{.4ex}

Answered by XxyourdarlingxX
40

\large\underline{\tt\red{Given:- }}

A conical tent is 10 m high, Height (h) = 10m. And, the radius of its base is 24 m, radius (r) = 24m.

\tt\large\underline{\red{To\:find:- }}

• The CSA(Curved surface area) of the conical tent.

\large\underline\bold\red{Solution:-}

Finding slant Height of the conical tent, let slant height be l .

Therefore,

:\implies\sf (l)^2 = (h)^2 + (r)^2 \\\\\\:\implies\sf l^2 = 10^2 + 24^2 \\\\\\:\implies\sf  l^2 = 100 + 576\\\\\\:\implies\sf l^2 = 676\\\\\\:\implies\sf  l = \sqrt{676}\\\\\\:\implies{\underline{\boxed{\frak{\green{l = 26\;m}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \; slant\; height\; of \; conical\; tent \; is \; \bf{26\;m }.}}}⠀⠀

\rule{250px}{.3ex}⠀⠀⠀

 \tt{\large{\pink{We\:know\:that}} }

\star\;\boxed{\sf{\orange{CSA_{\:(cone)} = \pi rl}}}

where,

r is the radius of the cone and l is the slant Height of the cone.

Therefore,

:\implies\sf CSA_{\:(tent)} = \bigg(\dfrac{22}{7} \times 24 \times 26\bigg)\\\\\\:\implies\sf CSA_{\:(tent)} = \bigg(\dfrac{22}{7} \times 624  \bigg)\\\\\\:\implies{\underline{\boxed{\tt{\red{ CSA_{\:(tent)} = 1961\;m^2}}}}}\;\bigstar

\rule{250px}{.4ex}

Similar questions