Hindi, asked by radhika6285, 6 months ago

a conical tent is 16m high and radius of base is 24cm Find the C.SA of the tent​

Answers

Answered by Anonymous
14

GiveN:

  • Height =16m
  • Radius of base=24cm

FinD:

  • CSA of tent

SolutioN:

Height = 16m

Radius = 24cm=0.24m

Slant height (l) = \sqrt{ {h}^{2} +  {r}^{2}  }

 \sqrt{ {16}^{2} +  {0.24}^{2}  }

 \sqrt{  256 + 0.0566}

 \sqrt{16.002m}

L= 16.002m

CSA of tent = πrl

CSA of tent = \frac{22}{7}  \times 16.002 \times 0.24

CSA = 12.07m

Answered by MrImpeccable
218

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  • height of conical tent = 16m =1600cm
  • radius of conical tent = 24cm

To find:

Curved Surface Area of conical tent

Solution:

\\ \setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{24cm}}\put(9.5,10){\sf{1600cm}}\put(18,13){\sf{1600.2cm}} \end{picture}\\

slant height (l) =  \displaystyle \sqrt{h^2+r^2}

l =  \displaystyle \sqrt{1600^2+24^2}

l =  \displaystyle \sqrt{2560000+576}

l =  \displaystyle \sqrt{2560576}

l  \approx 1600.2

CSA of cone =  \pi*r*l

CSA of cone =  3.14*24*1600.2

CSA of cone  \approx 120591.072

CSA of cone = 120591.072 cm^2

CSA of cone  \approx 12.06m^2

So,the CSA of the tent is 12.06m^2

Formula Used:

  • Volume of cone =  \pi*r*l

Learn More:

  • Volume of cylinder = πr²h

  • T.S.A of cylinder = 2πrh + 2πr²

  • Volume of cone = ⅓ πr²h

  • C.S.A of cone = πrl

  • T.S.A of cone = πrl + πr²

  • Volume of cuboid = l × b × h

  • C.S.A of cuboid = 2(l + b)h

  • T.S.A of cuboid = 2(lb + bh + lh)

  • C.S.A of cube = 4a²

  • T.S.A of cube = 6a²

  • Volume of cube = a³

  • Volume of sphere = (4/3)πr³

  • Surface area of sphere = 4πr²

  • Volume of hemisphere = ⅔ πr³

  • C.S.A of hemisphere = 2πr²

  • T.S.A of hemisphere = 3πr²
Similar questions