Math, asked by shubh928985, 2 days ago

A conical tent is to be accomodate 22 person each person must have 5m² of space on the ground and 30m³ of air to breadth find the height of conical tent
and explain why ​

Answers

Answered by mathdude500
8

Appropriate Question :-

A conical tent is to be accomodate 22 person. Each person must have 5m² of space on the ground and 30m³ of air to breathe. Find the height of conical tent.

\large\underline{\sf{Solution-}}

Let assume that radius of base of conical tent is r m and height of conical tent be h m.

Given that,

A conical tent is to be accomodate 22 person, each person must have 5m² of space on the ground.

So, Area of base = 22 × 5 = 110 m²

\rm\implies \:\pi \:  {r}^{2} \:  =  \: 110 -  -  - (1) \\

Further given that, A conical tent is to be accomodate 22 person, each person 30m³ of air to breathe.

So, Volume of air in conical tent = 22 × 30 = 660 m³

\rm \: \dfrac{1}{3} \pi {r}^{2}h \:  =  \: 660 \\

Now, using equation (1), we get

\rm \: \dfrac{1}{3}  \times 110 \times h \:  =  \: 660 \\

\rm\implies \:h \:  =  \: 18 \: m \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions