Math, asked by marky007, 9 months ago

a conical tent of capacity 1232m^3 stands on a circular base of area 154m^2.Find in m^2 the area of the canvas​

Answers

Answered by hipsterizedoll410
5

Answer: 550 m²

Given:

\sf Capacity\:of\:conical\:tent=1232\:m^3

\sf Area\:of\:the\:circular\:base=154\:m^2

To find:

\sf Area\:of\:the\:canvas.

Formula used:

\boxed{\sf Volume\:of\:cone=\dfrac{1}{3}\pi r^2h}

\boxed{\sf Area\:of\:the\:circle=\pi r^2}

\boxed{\sf Area\:of\:cone=\pi rl}

\boxed{\sf Slant\:height\:of\:the\:cone(l)=\sqrt{h^2+r^2} }

Explanation:

\sf According\:to\:the\:question,

\Rightarrow\sf \dfrac{1}{3}\pi r^2h=1232\:m^3

\sf Substituting\:the\:value\:of\:\pi r^2h\:in\:the\:above\:equation\:we\:get:

\Rightarrow\sf \dfrac{1}{3}\times 154\times h=1232\:m^3

\Rightarrow\sf h=\dfrac{1232\times3}{154}

\Rightarrow\boxed{\sf h=24\:m}

\sf It\:is\:also\:given\:that,

\sf \pi r^2=154 \:m^2

\sf Therefore,

\Rightarrow\sf \dfrac{22}{7}\times r^2=154

\Rightarrow\sf r^2=154\times \dfrac{7}{22}

\Rightarrow\sf r^2=49

\Rightarrow\boxed{\sf r=7\:m}

\sf We\:know\:that,

\sf Area\:of\:canvas=\pi rl

                      \sf =\dfrac{22}{7}\times 7\times \sqrt{h^2+r^2}

                      \sf =22 \times \sqrt{24^2+7^2}

                      \sf =22\times\sqrt{625}

                      \sf =22\times25

                      \sf =\boxed{\sf 550\:m^2}

Therefore, the area of the canvas is 550 m².

Answered by pulakmath007
0

Answer:

\huge{\mathcal{\underline{\green{SOLUTION }}}}

Let r = Radius of the base of the conical tent

h = Height of the conical tent

l = Slant Height of the conical tent

So

Area \: of \: the \: base \:  = \pi {r}^{2} \:  \:  \:  {cm}^{2}

Volume \: of \: the \: cone \:  =  \frac{1}{3}  \pi{r}^{2} h \:  \:  {cm}^{3}

Therefore

\pi{r}^{2} \: \:  =  \: 154

 {r}^{2}  = 154 \times  \frac{7}{22}

{r}^{2}  =  \: 49

r \:  =  \sqrt{49}  = 7

Again

\frac{1}{3}  \pi{r}^{2} h \: = 1232

 Since\:  \: \pi{r}^{2} \: \:  =  \: 154

So

 \frac{1}{3}  \times 154 \times h \:  = 1232

 \implies \: h \:  = 1232 \times  \frac{3}{154}

 \implies \: h \:  = 24

Again

 {l}^{2}  =  {r}^{2}  +  {h}^{2}

 \implies \:  {l}^{2}  =  {7}^{2}  +  {24}^{2}

 \implies \:  {l}^{2}  = 625

 \implies \:  {l} =  \sqrt{625}  = 25

Hence\: the \: area \: canvas

 = \pi \: r \: l \:  \:  \:  \:  {cm}^{2}

 =  \frac{22}{7}  \times 7 \times 25  \: \:  {cm}^{2}

 = 550 \:  \:  {cm}^{2}

Similar questions