Math, asked by marky007, 7 months ago

a conical tent of capacity 1232m^3 stands on a circular base of area 154m^2.Find in m^2 the area of the canvas​

Answers

Answered by sainathwani08
0

First you make me as a brainlist

Answered by pulakmath007
2

\huge{\mathcal{\underline{\green{SOLUTION }}}}

Let r = Radius of the base of the conical tent

h = Height of the conical tent

l = Slant Height of the conical tent

So

Area \: of \: the \: base \:  = \pi {r}^{2} \:  \:  \:  {cm}^{2}

Volume \: of \: the \: cone \:  =  \frac{1}{3}  \pi{r}^{2} h \:  \:  {cm}^{3}

Therefore

\pi{r}^{2} \: \:  =  \: 154

 {r}^{2}  = 154 \times  \frac{7}{22}

{r}^{2}  =  \: 49

r \:  =  \sqrt{49}  = 7

Again

\frac{1}{3}  \pi{r}^{2} h \: = 1232

 Since\:  \: \pi{r}^{2} \: \:  =  \: 154

So

 \frac{1}{3}  \times 154 \times h \:  = 1232

 \implies \: h \:  = 1232 \times  \frac{3}{154}

 \implies \: h \:  = 24

Again

 {l}^{2}  =  {r}^{2}  +  {h}^{2}

 \implies \:  {l}^{2}  =  {7}^{2}  +  {24}^{2}

 \implies \:  {l}^{2}  = 625

 \implies \:  {l} =  \sqrt{625}  = 25

Hence\: the \: area \: canvas

 = \pi \: r \: l \:  \:  \:  \:  {cm}^{2}

 =  \frac{22}{7}  \times 7 \times 25  \: \:  {cm}^{2}

 = 550 \:  \:  {cm}^{2}

Similar questions