Math, asked by premr9608gmailcom, 1 year ago

a conical vessel with radius 10 & h 15cm is completely filled with water .this water poured into a cylinder with radius 5cm find hieght of water in cylinder​

Answers

Answered by nain31
7
 \huge \bold{FOR \: CONE}

 \bold{Radius \: r = 10 \: cm}

 \bold{Height \: h = 15 \: cm}

Given, that the conical vessel is filled with water so,

 \boxed{Volume \: of \: cone = Volume \: of \: water}

 \huge \boxed{Volume \: of \: cone = \dfrac{1}{3} \times \pi \times {r}^{2} \times h}

On placing values,

 \mathsf{Volume \: of \: cone = \dfrac{1}{3} \times \dfrac{22}{7} \times {10}^{2} \times 15}

 \mathsf{Volume \: of \: cone = \dfrac{1}{3} \times \dfrac{22}{7} \times 10 \times 10 \times 15}

 \huge \boxed{\mathsf{Volume \: of \: cone =1571.42 \: cm^{2}}}

 \huge \bold{FOR \: CYLINDER }

 \bold{Radius \: r = 5 \: cm}

 \bold{Height \: h = ? }

 \huge \boxed{Volume \: of \: cylinder = \pi \times {r}^{2} \times h}

 \mathsf{Volume \: of \: cylinder = \dfrac{22}{7} \times 5 \times 5 \times h}

 \huge \boxed{Volume \: of \: cylinder = 78.57 h}

 \large\bold{ACCORDING \: TO Ä: QUESTION }

The water of cone is transfered into a cylinder ,since the volume of water will remain same, therefore,

 \boxed{Volume \: of \: cylinder = Volume \: of \: water}

Since,

 \boxed{Volume \: of \: cone = Volume \: of \: water}

Therefore,

 \boxed{Volume \: of \: cone = Volume \: of \: cylinder}

 \mathsf{1571.42 = 78.57 \times h}

 \mathsf{\dfrac{1571.42}{78.57}= h}

 \huge \boxed{HEIGHT = 20 \: cm}

Shruthi123456: Nice answer Naina didi❤
Similar questions