Physics, asked by 54562739darshanv, 10 months ago

a constant force an object of mass 5kg for a duration of 2s it increase the objects velocity from 3m/s to 7m/s find the magnitude of the applied force .now if the forces was applied for a duration of 5s what would be final velocity of object​

Answers

Answered by Rohit18Bhadauria
17

Given:

Mass of object,m= 5 kg

Time taken by object,t= 2s

Initial velocity of object,u= 3 m/s

Final velocity of object,v= 7 m/s

To Find:

The magnitude of the applied force and the velocity of object if the force is applied for a duration of 5s

Solution:

We know that,

  • Acceleration of a particle 'a' is given by

\pink{\underline{\boxed{\bf{a=\frac{v-u}{t}}}}}

  • Expression of force F is given by

\purple{\underline{\boxed{\bf{F=ma}}}}

where,

v is final velocity

u is initial velocity

t is time taken

m is mass

━━━━━━━━━━━━━━━━━━━━━━━━━

Let the acceleration of object be a

So,

\longrightarrow\rm{a=\dfrac{v-u}{t}}

\longrightarrow\rm{a=\dfrac{7-3}{2}}

\longrightarrow\rm{a=\dfrac{4}{2}}

\longrightarrow\rm{a=2\ m/s^{2}}

Let the applied force be F

So,

\longrightarrow\rm{F=m\times a}

\longrightarrow\rm{F=5\times 2}

\longrightarrow\rm\green{F=10\ N}

━━━━━━━━━━━━━━━━━━━━━━━━━

Let the final velocity of second case be v'

So,

\longrightarrow\rm{a=\dfrac{v'-u}{t}}

\longrightarrow\rm{2=\dfrac{v'-3}{5}}

\longrightarrow\rm{10=v'-3}

\longrightarrow\rm{v'-3=10}

\longrightarrow\rm\green{v'=13\ m/s}

Hence, the applied force is 10 N and the velocity of object if the force is applied for a duration of 5s  is 13 m/s.

Answered by NewGeneEinstein
3
  • initial velocity=u=3m/s
  • Final velocity=v=7m/s
  • Time=t=2s
  • Mass=5kg=m

Using newtons second law

\boxed{\sf F=ma}

\\ \sf\longmapsto F=m\dfrac{v-u}{t}

\\ \sf\longmapsto F=\dfrac{5(7-3)}{2}

\\ \sf\longmapsto F=\dfrac{5(4)}{2}

\\ \sf\longmapsto F=5\times 2

\\ \sf\longmapsto F=10N

Using first equation of kinematics

\boxed{\sf v'=u+at}

\\ \sf\longmapsto v'=3+2(5)

\\ \sf\longmapsto v'=3+10

\\ \sf\longmapsto v'=13m/s

Similar questions