Physics, asked by AmritangshuDas, 7 months ago

A constant retarding force of 50N is applied to a body of mass 20kg moving initially with speed of 20m/s .How long does the body take to stop?​

Answers

Answered by Anonymous
14

ANSWER:

  • The time taken by the body to stop = 8 s.

GIVEN:

  • A constant retarding force of 50N is applied to a body of mass 20kg.

  • Initial speed = 20 m/s.

  • Final speed = 0.

TO FIND:

  • The time taken by the body to stop.

EXPLANATION:

 \bigstar \ \boxed{ \bold{ \large{ \red{Decceleration =  - \dfrac{Force}{Mass}}}}} \\  \\  \\ \sf \longmapsto Decceleration = -  \dfrac{50}{20}\\  \\  \\ \sf \longmapsto Decceleration = -  \dfrac{5}{2} \\  \\  \\  \sf \longmapsto Decceleration =  - 2.5 \ ms^{ -  2} \\  \\  \\ \bigstar \ \boxed{ \bold{ \large{ \orange{v = u + at}}}} \\  \\  \\ \sf \longmapsto 0 = 20  - 2.5(t)  \\   \textsf{[ \ At last body comes to rest\ ]} \\  \\  \\  \sf 20 = 2.5t \\  \\   \\  \sf t = 8 \ s

Hence the time taken by the body to stop = 8 s.

NOTE : Decceleration = Retardation = Negative acceleration.

EXTRA CALCULATION:

 \bigstar \ \boxed{ \bold{ \large{ \blue{v^2 - u^2 = 2as}}}} \\  \\  \\ \sf \longmapsto 0^2 - 20^2 = 2(-2.5)S\\  \\  \\ \sf \longmapsto 0 - 400= -5S \\  \\  \\  \sf \longmapsto 400=5S \\  \\  \\ \sf \longmapsto S = 80\ m \\ \\ \\ {\Huge{\bold{ (OR)}}}\\ \\ \\ \bigstar \ \boxed{ \bold{ \large{\purple{S=ut +\dfrac{1}{2}at^2}}}} \\  \\  \\ \sf \longmapsto S = 20(8) +\dfrac{1}{2}(-2.5)(8)^2 \\  \\  \\ \sf \longmapsto S = 160 +\dfrac{1}{2}(-2.5)64 \\  \\  \\  \sf \longmapsto S = 160 -32(2.5) \\  \\  \\ \sf \longmapsto S = 160-80\\ \\ \\ \sf \longmapsto S = 80\ m

Hence the body travels 80 m before coming to rest.

Similar questions
Math, 7 months ago