Math, asked by vk028651, 2 months ago

A container opened from the top in the form of a frustum of a cone of height 16cm with the radii of its lower and upper ends are 8 cm and 20cm respectively. Find the cost of milk which can completely fill the container at the rate of Rs.20 per litre use (pie= 3.14)​

Answers

Answered by samadhanjorvekar01
4

Answer:

209 apx

Step-by-step explanation:

h = height = 16 cm

r₁ = radius of upper end = 20 cm

r₂ radius of lower end = 8 cm

Volume of container == πh(r₁² + r₂² + r₁ r²)

=> 3.14 × 16(20)² + (8)² + 20 × 8)

= 16.74 (624)

= 10445.76 cm³

10445.76 /1000 litre

= 10.44576 litre

Cost of 1 litre milk = Rs 20

Cost of 10.44576 litre milk = Rs 20 x 10.44576

Rs 208.91

Answered by King412
88

 \\   \underline{\purple{ \sf \large{Question :- }}} \\

A container opened from the top in the form of a frustum of a cone of height 16cm with the radii of its lower and upper ends are 8 cm and 20cm respectively. Find the cost of milk which can completely fill the container at the rate of Rs.20 per litre use (pie= 3.14)

 \\   \underline{\purple{ \sf \large{Solution :- }}} \\

In this, question

  • R = 20
  • r = 8
  • h = 16

Now, We have to find the capacity of container

therefore,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \underline{ \boxed{\sf \: Volume \: of \: frustum =  \green{ \dfrac{1}{3} \pi h(R^{2}  + r ^{2} + Rr)} }}\\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \:  \dfrac{1}{3}  \times 3.14 \times 16 \: ( {20}^{2}  +  {8}^{2}  + 20 \times 8) \\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \:  \dfrac{3.14}{3}  \times 16 \: ( {20}^{2}  +  {8}^{2}  + 20 \times 8) \\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \:  \dfrac{50.24}{3}   \times \: ( 400  +  64  + 160) \\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \:  \dfrac{50.24}{3}   \times 624 \\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \:  {50.24}\times 208 \\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \boxed{   \orange{\frak{\:  \:  \dfrac{ 10449.92}{1000} \:  \: liters} }}\\

Now, Cost of milk at Rs 20 per litre

  \\ \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \:  20 \times  \dfrac{10449.92}{1000}\\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \: 208.99 \approx \red{ \bold 209 }\\

To find a slant height

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {l}^{}  =  \sqrt{ {16}^{2}  +  {12}^{2} }  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  =  \sqrt{ 256  +  144 }  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  =  \sqrt{ 400}  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{\boxed{  \blue{ \frak{{l}^{}  =  20}}} } \\

Now, we have to find

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \underline{ \boxed{\sf Curved \:  surface  \: area  \: of  \: container :=  \green{ π(R+r)l} }}\\

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   \frac{22}{7}  \times (20 + 8) \times 20  \\

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   \frac{22}{7}  \times 2 8\times 20  \\

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   \frac{22}{7}    \times 560  \\

 \\   \sf \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \boxed{   \orange{\frak{\:  \:  { }{1758.4} \:   {cm}^{2} } }}\\

Now, let's find

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \underline{ \boxed{\sf Area \: of \: bottom\: of\: container=  \green{ πr^{2} } }}\\

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   \frac{22}{7}  \times ( 8)  ^{2} \\

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   \frac{22}{7}  \times 64 \\

 \\   \sf \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \boxed{   \orange{\frak{\:  \:  { }{200.96} \:   {cm}^{2} } }}\\

Now,

Total area of metal required

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   1758.4 + 200.96 \\

 \\   \sf \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \underline{ \boxed{   \color{blue}{\frak{\:  \:  { }{1959.36} \:   {cm}^{2} } }}}\\

Now, at last

Cost of metal sheet used to manufacture the container at Rs 20 per 100 cm²

 \\  \sf \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  :   \implies   \frac{20}{100}    \times 1959.36  \\

 \\   \sf \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  :   \implies \underline{ \boxed{   \pink{\frak{\:  \:  { }{ \:Rs \: 391.88} \:  } }}}\\  \\

Attachments:
Similar questions