Math, asked by kvnmurthy19, 1 year ago

A container shaped like a right circular cylinder having diameter 12 cm. and height 15 cm. is full of ice cream. The ice-cream is to be filled into cones of height 12 cm. and diameter 6 cm., having a hemispherical shape on the top. Find the number of such cones which can be filled with ice cream.

Attachments:

Answers

Answered by siddhartharao77
19

Answer:

10

Step-by-step explanation:

Given, Diameter = 12 cm.

Then, radius = 6 cm.

Volume of cylinder = πr²h

                               = π(6)² * 15

                               = 540π cm³.


Volume of cone having hemispherical shape on the top:

Given, height = 12 cm and radius = d/2 = 3 cm.

= (1/3) πr²h + (2/3) πr³

= (1/3)πr²[h + 2r]

= (1/3)π(3)²[12 + 6]

= (1/3) * 9π[18]

= 54π cm³


Number of such cones = 540π/54π

                                      = 10.



Hope it helps!

Answered by Anonymous
57

\huge\underline\mathrm\orange{SOLUTION:-}

\footnotesize{\boxed{\sf number \: of \: cone =  \frac{volume \: of \: cylinder}{volume \: of \: ice \: cream}}}

\large\underline\textsf{Volume of cylinder }

\implies\sf diameter = 12cm

\implies\sf radius =  \frac{diameter}{2}  = 6cm

\large\underline{\boxed{\sf volume \:of\: cylinder = \pi r^2h}}

\implies\pi(6) {}^{2}  \times( 15)

\implies\sf\pi(6 \times 6) \times (15)

\implies\sf\red{540\pi}

\small\underline\textsf{volume of ice cream cone}

\footnotesize{\boxed{\sf volume \: of  \: ice \: cream\: cone + volume \: of \: hemishphere}}

\large\underline\textsf{volume of cone }

\implies\sf diameter = 6

\implies\sf radius =  \frac{diameter}{2}  = 3cm

\implies\sf hieght = 12cm

\implies\sf volume \: of \: cone \:  =  \frac{1}{3} \pi \: r {}^{2} h

\boxed{\sf \frac{1}{3}  \times \pi \times (3) {}^{2}  \times (12)}

\implies\sf\red{36\pi}

\large\underline\textsf{ Volume of hemisphere }

\sf radius =  \frac{diameter}{2}  = 3cm

\implies\sf volume \: of \: hemisphere =  \frac{2}{3} \pi \: r {}^{3}

\implies\sf \frac{2}{3}  \times \pi \times (3) {}^{3}  = \red{18\pi}

\small\underline\textsf{Hence, }

\large\underline\textsf{volume of ice-cream }

\implies\sf volume \: of \: cone + volume \: of \: hemisphere

\implies\sf36\pi + 18\pi

\small\underline\textsf{Now, }

\footnotesize{\boxed{\sf number \: of \: cone =  \frac{volume \: of \: cylinder}{volume \: of \: ice \: cream \: cone}}}

\implies\sf \frac{540\pi}{54\pi}

\sf {So ,\: the \: number \: of \: cone = 10}

Similar questions