Math, asked by pooja8908, 1 year ago

A container which is cylindrical in shape having diameter 16 cm and height 40 cm is full of ice cream ice cream to be filled into cones of height 12 cm and diameter 4 cm having a hemispherical shape on top find the number of such coins which can be filled with ice cream

Answers

Answered by jacobcunningham202
0

Given:

For right circular cylinder

Diameter = 12 cm

Radius(R1) = 12/2= 6 cm & height (h1) = 15 cm

Volume of Cylindrical ice-cream container= πr1²h1= 22/7 × 6× 6× 15= 11880/7 cm³

Volume of Cylindrical ice-cream container=11880/7 cm³

For cone,

Diameter = 6 cm

Radius(r2) =6/2 = 3 cm & height (h2) = 12 cm

Radius of hemisphere = radius of cone= 3 cm

Volume of cone full of ice-cream= volume of cone + volume of hemisphere

= ⅓ πr2²h2 + ⅔ πr2³= ⅓ π ( r2²h2 + 2r2³)

= ⅓ × 22/7 (3²× 12 + 2× 3³)

= ⅓ × 22/7 ( 9 ×12 + 2 × 27)

= 22/21 ( 108 +54)

= 22/21(162)

= (22×54)/7

= 1188/7 cm³

Let n be the number of cones full of ice cream.

Volume of Cylindrical ice-cream container =n × Volume of one cone full with ice cream

11880/7 = n × 1188/7

11880 = n × 1188

n = 11880/1188= 10

n = 10

Hence, the required Number of cones = 10

==================================================================

Hope this will help you....  bebrainly

Similar questions