Math, asked by jaishnagpal, 3 months ago

A continuous random variable x that can assume value between x= 2 and x=5 has a
probability density function
p(x) = k( 1+x) . Determine p(x<4)

Answers

Answered by prasadronit6
9

RONIT

...

..

..

.

.

.

.Answer

Attachments:
Answered by pulakmath007
15

 \displaystyle \sf P(x &lt; 4) =  \frac{16}{27}

Given :

A continuous random variable x that can assume value between x = 2 and x = 5 has a probability density function p(x) = k( 1+x)

To find :

The value of P(x < 4)

Solution :

Step 1 of 2 :

Find the value of k

Here it is given that the continuous random variable x that can assume value between x = 2 and x = 5 has a probability density function p(x) = k( 1+x)

By the given condition

 \displaystyle \sf \int\limits_{ - \infty}^{\infty} p(x) \, dx = 1

 \displaystyle \sf \implies \int\limits_{2}^{5} k(1 + x) \, dx = 1

 \displaystyle \sf \implies k \bigg[x +  \frac{ {x}^{2} }{2}  \bigg]_{2}^{5} = 1

 \displaystyle \sf \implies k \bigg[5 +  \frac{ {5}^{2} }{2}   \bigg] - k \bigg[2 +  \frac{ {2}^{2} }{2}  \bigg] = 1

 \displaystyle \sf \implies k \bigg[3 +  \frac{ 21}{2}   \bigg] = 1

 \displaystyle \sf \implies k \bigg[  \frac{6 +  21}{2}   \bigg] = 1

 \displaystyle \sf \implies k  \times  \frac{27}{2} = 1

 \displaystyle \sf \implies k   =  \frac{2}{27}

Step 2 of 2 :

Find value of P(x < 4)

P(x < 4)

 \displaystyle \sf  = \int\limits_{ - \infty}^{4} p(x) \, dx

 \displaystyle \sf  = \int\limits_{ 2}^{4} p(x) \, dx

 \displaystyle \sf  = \int\limits_{ 2}^{4} k(1 + x) \, dx

 \displaystyle \sf  =  k \bigg[x +  \frac{ {x}^{2} }{2}  \bigg]_{2}^{ 4}

 \displaystyle \sf  =  k \bigg[4 +  \frac{ {4}^{2} }{2}   \bigg] - k \bigg[2 +  \frac{ {2}^{2} }{2}  \bigg]

 \displaystyle \sf  =  k \bigg[4 +  8  \bigg] - k \bigg[2 +  2  \bigg]

 \displaystyle \sf  = 12 k -4 k

 \displaystyle \sf  =8k

 \displaystyle \sf  =8 \times  \frac{2}{27}

 \displaystyle \sf  =  \frac{16}{27}

Similar questions