Physics, asked by mishaazhar030072ma, 10 months ago

A converging mirror with a radius of 20cm creates a real image at 30cm from the mirror what is the objects distance

Answers

Answered by Sharad001
493

 \large \underline{  \red{\underline{ \sf Question}}} :  -  \\  \sf A \: converging \: mirror \: with \: a \: radius \: of \: 20cm \\ \sf creates \: a \: real \: image \: at \: 30cm \: from \: the \:  \\ \sf mirror \:  what \: is \: the \: object \: distance \: .

\large \underline{  \green{\underline{ \sf \: Answer  \:  }}} :  -  \\ \sf object \:  distance \:  is \:  1 5 cm \:

\large \underline{  \red{\underline{ \sf To \: Find  }}} \:  -  \\   \to \sf object \: distance \:

\large \underline{  \pink{\underline{ \sf Explanation   }}} \:  :  -  \\

Given that :

  • Image distance (v) = 30 cm

  • Radius of curvature (R) = 20 cm

  • Object distance (u) = ?

Note :-

→ Focal length of a converging mirror is positive .

 \large \underline{  \pink{\underline{ \sf Solution  }}} \: :  -  \\

we know that ,

 \to \sf \frac{2}{R}  =  \frac{1}{v} +  \frac{1}{u}   \\   \\ \rm  putting \: the \: given \: values \:  \\  \\  \to \sf \frac{2}{20}  =  \frac{1}{30}  +  \frac{1}{u}  \\  \\  \to \sf  \frac{1}{u}  =  \frac{1}{10}  -  \frac{1}{30}  \\  \\  \to \sf  \frac{1}{u}  =  \frac{3- 1}{30}  \\  \\  \to \sf  \frac{1}{u}  =  \frac{2}{30}  \\  \\  \to \sf  \frac{1}{u}  =  \frac{1}{15}  \\  \\  \to \boxed{ \sf u = 15cm \: }

•°• object distance is 15 cm

Answered by Anonymous
124

\huge  {\red{\boxed{ \overline{ \underline{ \mid\mathfrak{An}{\mathrm{sw}{ \sf{er}}   \colon\mid}}}}}}

Given :

  • Mirror is concave
  • Image Distance (v) = 30 cm
  • Radius of Curvature (R) = 20 cm

Solution :

As we know that :

\large \star {\boxed{\sf{R \: = \: 2f}}} \\ \\ \implies {\sf{2f \: = \: 20}} \\ \\ \implies {\sf{f \: = \: \dfrac{20}{2}}} \\ \\ \implies {\sf{f \: = \: 10 \: cm}}

Focal length is 10 cm

_________________________________

Now use mirror formula :

\large \star {\boxed{\sf{\dfrac{1}{f} \: = \: \dfrac{1}{v} \: + \: \dfrac{1}{u}}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{1}{f} \: - \: \dfrac{1}{v}}} \\ \\ \implies {\sf{\dfrac{1}{f} \: = \: \dfrac{1}{10} \: - \: \dfrac{1}{30}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{3 \: - \: 1}{30}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{2}{30}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{1}{15}}} \\ \\ \implies {\sf{u \: = \: 15 \: cm}}

Object Position is 15 cm

Similar questions