Physics, asked by abu1010, 6 months ago

A convex lens of focal length 25 cm and a concave lens of focal length 10 cm are

paced in close contact with each other. Calculate the lens power of this combination

Answers

Answered by harshkashyap37
0

Answer:

a convex contains

mark me branilest please

Answered by prince5132
14

GIVEN :-

  • Focal length of convex lens = 25 cm.
  • Focal length of concave lens = -10 cm (-ve).

TO FIND :-

  • The lens power of the combination.

SOLUTION :-

 \underline{  \bigstar \: \textsf{For convex Lens.}}  \\

As we know that the power of lens is is given by,

 \\  :  \implies \displaystyle\sf \: P =  \frac{1}{f}  \\  \\

  • f = Focal length.
  • P = lens power.

 \\ :  \implies \displaystyle\sf \: P =  \frac{1}{ \dfrac{25}{100} }   \:  \\  \\  \\

:  \implies \displaystyle\sf \: P =  \frac{1}{0.25}  \\  \\  \\

:  \implies  \underline{ \boxed{\displaystyle\sf \: P = 4 \: D}} \\  \\

\underline{  \bigstar \: \textsf{For concave \: Lens.}}  \\

As we know that the power of lens is is given by,

 \\ :  \implies \displaystyle\sf \: P' =  \frac{1}{f'}  \\  \\

  • f' = Focal length.
  • P' = lens power

 \\ :  \implies \displaystyle\sf \: P' = \frac{1}{ -  \dfrac{10}{100} }  \\  \\  \\

:  \implies \displaystyle\sf \: P' = \frac{1}{ - 0.10}  \\  \\  \\

:  \implies \displaystyle\sf \: P' = - 10 \: D \\  \\

_____________________

 \\ :  \implies \displaystyle\sf \: P_{net} =  P + P'  \\  \\  \\

:  \implies \displaystyle\sf \: P_{net} = 4\: D + ( - 10) \: D \\  \\  \\

:  \implies \displaystyle\sf \: P_{net} = 4 \: D - 10 \: D \\  \\  \\

:  \implies  \underline{ \boxed{\displaystyle\sf \: \bold{ P_{net} =  - 6  \:  D }}}

Similar questions