Math, asked by atplani8, 26 days ago

A convex mirror has its radius of curvature 20 cm. Find the position of the image of a object placed at a distance of 12 cm from the mirror.​

Answers

Answered by LALITKULOURA1234
0

From mirror formula,

u

1

+

v

1

=

f

1

;u is −ve (∵f=

2

R

=

2

20

=10cm)

v

1

=

f

1

u

1

=

10

−1

+

12

−1

=−(

60

5+6

)=

60

−11

(∵f is −ve for a concave mirror)

∴v=

11

60

cm

So the distance of the image is

6/11 and it is virtual ( -ve)

please make me as brainlist

Answered by King412
41

 \\ \large \:  \bigstar \:  \:  \purple{ \underline{ { \underline{ \bf{Given : -  }}}} }\\

  • A convex mirror
  • The radius of curvature is 20cm.
  • The object placed at a distance of 1e cm from the mirror.

 \\ \large \:  \bigstar \:  \:  \purple{ \underline{ { \underline{ \bf{To \: find  : -  }}}} }\\

  • The position of image

 \\ \large \:  \bigstar \:  \:  \purple{ \underline{ { \underline{ \bf{Solution  : -  }}}} }\\

Formula :-

 \\  \qquad \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \sf \:   \underline{\boxed{ \sf \:  \frac{1}{v} +  \frac{1}{u}   =  \frac{1}{f} }}  \\

Where,

  • u is the object distance
  • v is the image distance
  • f is the focal length given by \sf \:  f = \dfrac{R}{2}
  • R is the radius of curvature of the convex mirror.

At first, Let's find the focal length

  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:  f = \dfrac{R}{2} \\

  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:   \rightarrow \:  \dfrac{20}{2} \\

  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: \bold{  f = 10cm}\\

So, To find image distance the formula will be

 \\  \qquad \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \sf \:    \sf \:  \frac{1}{v}  =   \frac{1}{f}    -   \frac{1}{u}  \\

Now , put the given values in formula

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:  \frac{ - 1}{10}  +  \frac{ - 1}{12}  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:   - \frac{ 5}{60} +  \frac{6}{60}    \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:    \bigg(\frac{  - 5 + 6}{60}  \bigg)   \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:    \bigg(\frac{  - 11}{60}  \bigg)   \\

Therefore,

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:     \underline{\boxed{  \green{\frak{v =  \frac{   60}{11}  }} } } \: cm \\

 \\ \:  \:  \:  \:  \:† \:  \sf So,   \underline{\: the \:  Image  \: distance  \: is \:  \:  \frac{60}{11} cm . }\\

Similar questions