Physics, asked by va3020390, 11 months ago


A convex mirror produces magnification
of 1/4 if the focal length of the mirror is
16 cm find position of the object
of image​

Answers

Answered by CunningKing
5

Solution :-

◘ Focal length (f) = +16 cm

◘ Magnification, m = 1/4

We know that, for a convex mirror,

\tt{m=-\dfrac{v}{u} }

Solving it further :-

\tt{\dfrac{1}{4}=-\dfrac{v}{u} }\\\\\tt{\hookrightarrow u=-4v}               .............(1)

Applying mirror formula :-

\displaystyle{\tt{\frac{1}{v}+\frac{1}{u}=\frac{1}{f} }}\\\\\displaystyle{\tt{\hookrightarrow \frac{1}{v}+\frac{1}{-4v}=\frac{1}{16}   }}\\\\\displaystyle{\tt{\hookrightarrow \frac{1}{v}-\frac{1}{4v}=\frac{1}{16}  }}\\\\\displaystyle{\tt{\hookrightarrow \frac{4-1}{4v}=\frac{1}{16}  }}\\\\\displaystyle{\tt{\hookrightarrow \frac{3}{4v}=\frac{1}{16}  }}\\\\\displaystyle{\tt{\hookrightarrow 48=4v}}\\\\\boxed{\boxed{\displaystyle{\tt{\hookrightarrow v=12\ cm}}}}

Hence, the image distance is 12 cm.

Now, putting the value of v is equation (1) :-

\tt{u=-4(12)}\\\\\boxed{\boxed{\displaystyle{\tt{\hookrightarrow u=-48\ cm}}}}

Hence, the object distance is -48 cm.

Answered by Anonymous
13

\large\underline\bold{ANSWER \red{\huge{\checkmark}}}

  • Focal length (f) = +16 cm
  • Magnification, m = 1/4

We know that, for a convex mirror,

\tt{m=-\dfrac{v}{u} }

Solving it further :-

\tt{\dfrac{1}{4}=-\dfrac{v}{u} }\\\\\tt{\hookrightarrow u=-4v}               .............(1)

Applying mirror formula :-

\displaystyle{\tt{\frac{1}{v}+\frac{1}{u}=\frac{1}{f} }}\\\\\displaystyle{\tt{\hookrightarrow \frac{1}{v}+\frac{1}{-4v}=\frac{1}{16}   }}\\\\\displaystyle{\tt{\hookrightarrow \frac{1}{v}-\frac{1}{4v}=\frac{1}{16}  }}\\\\\displaystyle{\tt{\hookrightarrow \frac{4-1}{4v}=\frac{1}{16}  }}\\\\\displaystyle{\tt{\hookrightarrow \frac{3}{4v}=\frac{1}{16}  }}\\\\\displaystyle{\tt{\hookrightarrow 48=4v}}\\\\\boxed{\boxed{\displaystyle{\tt{\hookrightarrow v=12\ cm}}}}

Hence, the image distance is 12 cm.

Now, putting the value of v is equation (1) :-

\tt{u=-4(12)}\\\\\boxed{\boxed{\displaystyle{\tt{\hookrightarrow u=-48\ cm}}}}

Hence, the object distance is -48 cm.

Similar questions